Leptin, the Product of Ob Gene, Promotes Angiogenesis

Author:

Bouloumié Anne1,Drexler Hannes C. A.1,Lafontan Max1,Busse Rudi1

Affiliation:

1. From Institut für Kardiovaskuläre Physiologie, Klinikum der J.W. Goethe-Universität (A.B., R.B.), Frankfurt/Main, Germany; Max-Planck-Institut für physiologische und klinische Forschung (H.C.A.D.), Bad Nauheim, Germany; and INSERM U317, Institut Louis Bugnard, CHU Rangueil (M.L.), Toulouse, France.

Abstract

Abstract —The adipocyte-derived cytokine leptin is thought to play a key role in the control of satiety and energy expenditure. Because adipogenesis and angiogenesis are tightly correlated during the fat mass development, we tested the hypothesis that leptin is able to modulate the growth of the vasculature. Experiments were performed using cultured human umbilical venous endothelial cells (HUVECs) and porcine aortic endothelial cells. The presence of 170-kDa endothelial leptin receptor (Ob-R) was assessed in HUVECs by Western blot analysis. Reverse transcriptase–polymerase chain reaction analysis using specific oligonucleotides for the short and long Ob-R forms further revealed the expression of both Ob-R transcripts in endothelial cells. Moreover, leptin evoked a time-dependent tyrosine phosphorylation of a number of endothelial proteins, the most prominent of which were the mitogen-activated protein kinases Erk1/2. Treatment of HUVECs with leptin led to a concentration-dependent increase in cell number that was maximal at 10 ng/mL leptin and equivalent to that elicited by vascular endothelial growth factor. This effect was associated with an enhanced formation of capillary-like tubes in an in vitro angiogenesis assay and neovascularization in an in vivo model of angiogenesis. These results indicate that leptin, via activation of the endothelial Ob-R, generates a growth signal involving a tyrosine kinase-dependent intracellular pathway and promotes angiogenic processes. We speculate that this leptin-mediated stimulation of angiogenesis might represent not only a key event in the settlement of obesity but also may contribute to the modulation of growth under physiological and pathophysiological conditions in other tissues.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3