Normal Development of the Outflow Tract in the Rat

Author:

Ya Jing1,van den Hoff Maurice J. B.1,de Boer Piet A. J.1,Tesink-Taekema Sabina1,Franco Diego1,Moorman Antoon F. M.1,Lamers Wouter H.1

Affiliation:

1. From the Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.

Abstract

Abstract —The outflow tract (OFT) provides the structural components forming the ventriculoarterial connection. The prevailing concept that this junction “rotates” to acquire its definitive topography also requires a concept of “counterrotation” and is difficult to reconcile with cell-marking studies. Rats between 10 embryonic days (EDs) and 2 postnatal days were stained immunohistochemically and by in situ hybridization. DNA replication was determined by incorporation of bromodeoxyuridine and apoptosis by the annexin V binding and terminal deoxynucleotidyl transferase–mediated dUTP-X nick end labeling (TUNEL) assays. Starting at ED12, cardiomyocytes in the distal (truncal) part of the OFT begin to shed their myocardial phenotype without proceeding into apoptosis, suggesting transdifferentiation. Myocardial regression is most pronounced on the dextroposterior side and continues until after birth, as revealed by the disappearance of the myocardial cuff surrounding the coronary roots and semilunar sinuses and by the establishment of fibrous continuity between mitral and aortic semilunar valves. Fusion of the endocardial ridges of the truncus on late ED13 is accompanied by the organization of α-smooth muscle actin–and nonmuscle myosin heavy chain–positive myofibroblasts into a central whorl and the appearance of the semilunar valve anlagen at their definitive topographical position within the proximal portion of the truncus. After fusion of the proximal (conal) portion of the endocardial ridges, many of the resident myofibroblasts undergo apoptosis and are replaced by cardiomyocytes. The distal myocardial boundary of the OFT is not a stable landmark but moves proximally over the spiraling course of the aortic and pulmonary routes, so that the semilunar valves develop at their definitive topographic position. After septation, the distal boundary of the OFT continues to regress, particularly in its subaortic portion. The myocardializing conus septum, on the other hand, becomes largely incorporated into the right ventricle. These opposite developments account for the pronounced asymmetry of the subaortic and subpulmonary outlets in the formed heart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3