Lead-Induced Hypertension

Author:

Gonick Harvey C.1,Ding Yaoxian1,Bondy Steven C.1,Ni Zhenmin1,Vaziri Nosratola D.1

Affiliation:

1. From the University of California, at Los Angeles and Irvine and Cedars-Sinai Medical Center, The Burns and Allen Research Institute, Los Angeles (H.C.G.) and the University of California, Irvine (Y.D., S.C.B., Z.N., N.D.V.).

Abstract

Abstract An elevation of mean blood pressure was found in rats treated with low lead (0.01% lead acetate) for 3 months, as contrasted to paired Sprague-Dawley control rats. In these rats, measurement of plasma and urine endothelins-1 and -3 revealed that plasma concentration and urinary excretion of endothelin-3 increased significantly after 3 months (plasma: lead group, 31.8±2.2, versus controls, 23.0+1.7 pg/mL, P <.001; urinary excretion: lead group, 46.6+11.7, versus controls, 35.6+6.7 pg/24 h, P <.05), whereas endothelin-1 was unaffected. Plasma and urinary nitric oxide (NO) and cyclic GMP concentrations were not significantly changed. However, assay of plasma and kidney cortex malondialdehyde by high-pressure liquid chromatography, as a measure of reactive oxygen species, was elevated in lead-treated rats compared with that in control rats (plasma: lead group, 4.74+1.27, versus controls, 2.14+.49 μmol/L, P <.001; kidney cortex: lead group, 28.75+3.46, versus controls, 16.38+2.37 nmol/g wet weight, P <.001). There was increased NO synthase activity in lead-treated rat brain cortex and cerebellum. In lead-treated rat kidney cortex, the endothelial constitutive NO synthase protein mass was unaffected, whereas the inducible NO synthase protein mass was increased. These data suggest a balance between increased NO synthesis and degradation (by reactive oxygen species) in lead-treated rats, which results in normal levels of NO. Thus, the hypertension may be related to an increase in the pressure substances, endothelin-3 and reactive oxygen species, rather than to an absolute decrease in nitric NO.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3