ADP Stimulates Human Endothelial Cell Migration via P2Y 1 Nucleotide Receptor–Mediated Mitogen-Activated Protein Kinase Pathways

Author:

Shen Jianzhong1,DiCorleto Paul E.1

Affiliation:

1. From the Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Ohio.

Abstract

Extensive research on the role of ADP in platelet activation led to the design of new anti-thrombotic drugs, such as clopidogrel (Plavix; sanofi-aventis); however, very little is known about the ADP-preferring nucleotide receptors (P2Y 1 , P2Y 12 , and P2Y 13 ) in endothelium. Here, we show that ADP stimulates migration of cultured human umbilical vein endothelial cells (HUVECs) in both Boyden chamber and in vitro wound repair assays. This promigratory effect was mimicked by 2-MeSADP, but not by AMP, and was inhibited by MRS2179 (P2Y 1 receptor antagonist) but not by AR-C69931MX (P2Y 12/13 receptor antagonist). RT-PCR revealed abundant P2Y 1 , barely detectable P2Y 12 , and absent P2Y 13 receptor message in these cells. In addition, both ADP and 2-MeSADP, but not AMP, activated the mitogen-activated protein kinase pathways as evidenced by increased phosphorylation of extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK), and p38 kinase. ADP also stimulated phosphorylation of p90RSK, a downstream substrate of phosphorylated ERK1/2, and induced phosphorylation of such transcription factors downstream of the JNK and p38 pathways as c-Jun and activating transcription factor-2. These signaling events were inhibited by MRS2179 but not by AR-C69931MX. Furthermore, blockade of the ERK or JNK pathways by U0126 and SP600125, respectively, abolished ADP- and 2-MeSADP–stimulated HUVEC migration. However, inhibition of the p38 pathway by SB203580 partially suppressed ADP- and 2-MeSADP–induced HUVEC migration. We conclude that ADP promotes human endothelial cell migration by activating P2Y 1 receptor–mediated MAPK pathways, possibly contributing to reendothelialization and angiogenesis after vascular injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3