Affiliation:
1. From the Cardiovascular Research Center, Sanford Research/University of South Dakota, Sioux Falls.
Abstract
We previously identified an α1-AR-ERK (α1A-adrenergic receptor–extracellular signal-regulated kinase) survival signaling pathway in adult cardiac myocytes. Here, we investigated localization of α1-AR subtypes (α1A and α1B) and how their localization influences α1-AR signaling in cardiac myocytes. Using binding assays on myocyte subcellular fractions or a fluorescent α1-AR antagonist, we localized endogenous α1-ARs to the nucleus in wild-type adult cardiac myocytes. To clarify α1 subtype localization, we reconstituted α1 signaling in cultured α1A- and α1B-AR double knockout cardiac myocytes using α1-AR–green fluorescent protein (GFP) fusion proteins. Similar to endogenous α1-ARs and α1A- and α1B-GFP colocalized with LAP2 at the nuclear membrane. α1-AR nuclear localization was confirmed in vivo using α1-AR-GFP transgenic mice. The α1-signaling partners Gαq and phospholipase Cβ1 also colocalized with α1-ARs only at the nuclear membrane. Furthermore, we observed rapid catecholamine uptake mediated by norepinephrine-uptake-2 and found that α1-mediated activation of ERK was not inhibited by a membrane impermeant α1-blocker, suggesting α1 signaling is initiated at the nucleus. Contrary to prior studies, we did not observe α1-AR localization to caveolae, but we found that α1-AR signaling initiated at the nucleus led to activated ERK localized to caveolae. In summary, our results show that nuclear α1-ARs transduce signals to caveolae at the plasma membrane in cardiac myocytes.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
108 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献