mir-17–92 Cluster Is Required for and Sufficient to Induce Cardiomyocyte Proliferation in Postnatal and Adult Hearts

Author:

Chen Jinghai1,Huang Zhan-Peng1,Seok Hee Young1,Ding Jian1,Kataoka Masaharu1,Zhang Zheng1,Hu Xiaoyun1,Wang Gang1,Lin Zhiqiang1,Wang Si1,Pu Willam T.1,Liao Ronglih1,Wang Da-Zhi1

Affiliation:

1. From the Department of Cardiology, Boston Children’s Hospital (J.C., Z.-P.H., H.Y.S., J.D., M.K., Z.Z., X.H., G.W., Z.L., S.W., W.T.P., D.-Z.W.), and Brigham and Women’s Hospital (R.L.), Harvard Medical School, Boston, MA; Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China (Z.Z.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P., R.L., D.Z.W.).

Abstract

Rationale: Cardiomyocytes in adult mammalian hearts are terminally differentiated cells that have exited from the cell cycle and lost most of their proliferative capacity. Death of mature cardiomyocytes in pathological cardiac conditions and the lack of regeneration capacity of adult hearts are primary causes of heart failure and mortality. However, how cardiomyocyte proliferation in postnatal and adult hearts becomes suppressed remains largely unknown. The miR-17–92 cluster was initially identified as a human oncogene that promotes cell proliferation. However, its role in the heart remains unknown. Objective: To test the hypothesis that miR-17–92 participates in the regulation of cardiomyocyte proliferation in postnatal and adult hearts. Methods and Results: We deleted miR-17–92 cluster from embryonic and postnatal mouse hearts and demonstrated that miR-17–92 is required for cardiomyocyte proliferation in the heart. Transgenic overexpression of miR-17–92 in cardiomyocytes is sufficient to induce cardiomyocyte proliferation in embryonic, postnatal, and adult hearts. Moreover, overexpression of miR-17–92 in adult cardiomyocytes protects the heart from myocardial infarction-induced injury. Similarly, we found that members of miR-17–92 cluster, miR-19 in particular, are required for and sufficient to induce cardiomyocyte proliferation in vitro. We identified phosphatase and tensin homolog, a tumor suppressor, as an miR-17–92 target to mediate the function of miR-17–92 in cardiomyocyte proliferation. Conclusions: Our studies therefore identify miR-17–92 as a critical regulator of cardiomyocyte proliferation, and suggest this cluster of microRNAs could become therapeutic targets for cardiac repair and heart regeneration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3