Genetic Deficiency of Glutathione S -Transferase P Increases Myocardial Sensitivity to Ischemia–Reperfusion Injury

Author:

Conklin Daniel J.1,Guo Yiru1,Jagatheesan Ganapathy1,Kilfoil Peter J.1,Haberzettl Petra1,Hill Bradford G.1,Baba Shahid P.1,Guo Luping1,Wetzelberger Karin1,Obal Detlef1,Rokosh D. Gregg1,Prough Russell A.1,Prabhu Sumanth D.1,Velayutham Murugesan1,Zweier Jay L.1,Hoetker J. David1,Riggs Daniel W.1,Srivastava Sanjay1,Bolli Roberto1,Bhatnagar Aruni1

Affiliation:

1. From the Diabetes and Obesity Center (D.J.C., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., K.W., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B.), Institute of Molecular Cardiology (D.J.C., Y.G., P.J.K., P.H., B.G.H., S.P.B., D.O., D.G.R., S.S., R.B., A.B.), Division of Cardiovascular Medicine, Department of Medicine (D.J.C., Y.G., G.J., P.J.K., P.H., B.G.H., S.P.B., L.G., D.O., D.G.R., J.D.H., D.W.R., S.S., R.B., A.B), Department of Anesthesiology and Perioperative Medicine (D.O.), and Department of...

Abstract

Rationale: Myocardial ischemia–reperfusion (I/R) results in the generation of oxygen-derived free radicals and the accumulation of lipid peroxidation–derived unsaturated aldehydes. However, the contribution of aldehydes to myocardial I/R injury has not been assessed. Objective: We tested the hypothesis that removal of aldehydes by glutathione S -transferase P (GSTP) diminishes I/R injury. Methods and Results: In adult male C57BL/6 mouse hearts, Gstp1/2 was the most abundant GST transcript followed by Gsta4 and Gstm4.1 , and GSTP activity was a significant fraction of the total GST activity. mGstp1/2 deletion reduced total GST activity, but no compensatory increase in GSTA and GSTM or major antioxidant enzymes was observed. Genetic deficiency of GSTP did not alter cardiac function, but in comparison with hearts from wild-type mice, the hearts isolated from GSTP-null mice were more sensitive to I/R injury. Disruption of the GSTP gene also increased infarct size after coronary occlusion in situ. Ischemia significantly increased acrolein in hearts, and GSTP deficiency induced significant deficits in the metabolism of the unsaturated aldehyde, acrolein, but not in the metabolism of 4-hydroxy- trans -2-nonenal or trans -2-hexanal; on ischemia, the GSTP-null hearts accumulated more acrolein-modified proteins than wild-type hearts. GSTP deficiency did not affect I/R-induced free radical generation, c-Jun N-terminal kinase activation, or depletion of reduced glutathione. Acrolein exposure induced a hyperpolarizing shift in I Na , and acrolein-induced cell death was delayed by SN-6, a Na + /Ca ++ exchange inhibitor. Cardiomyocytes isolated from GSTP-null hearts were more sensitive than wild-type myocytes to acrolein-induced protein crosslinking and cell death. Conclusions: GSTP protects the heart from I/R injury by facilitating the detoxification of cytotoxic aldehydes, such as acrolein.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3