Cardiac Myoediting Attenuates Cardiac Abnormalities in Human and Mouse Models of Duchenne Muscular Dystrophy

Author:

Atmanli Ayhan123ORCID,Chai Andreas C.123ORCID,Cui Miao123,Wang Zhaoning123,Nishiyama Takahiko123,Bassel-Duby Rhonda123,Olson Eric N.123ORCID

Affiliation:

1. Department of Molecular Biology (A.A., A.C.C., M.C., Z.W., T.N., R.B.-D., E.N.O.), University of Texas Southwestern Medical Center, Dallas, TX.

2. Hamon Center for Regenerative Science and Medicine (A.A., A.C.C., M.C., Z.W., T.N., R.B.-D., E.N.O.), University of Texas Southwestern Medical Center, Dallas, TX.

3. Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center (A.A., A.C.C., M.C., Z.W., T.N., R.B.-D., E.N.O.), University of Texas Southwestern Medical Center, Dallas, TX.

Abstract

Rationale: Absence of dystrophin in Duchenne muscular dystrophy (DMD) results in the degeneration of skeletal and cardiac muscles. Owing to advances in respiratory management of patients with DMD, cardiomyopathy has become a significant aspect of the disease. While CRISPR/Cas9 genome editing technology holds great potential as a novel therapeutic avenue for DMD, little is known about the potential of DMD correction using CRISPR/Cas9 technology to mitigate cardiac abnormalities in DMD. Objective: To define the effects of CRISPR/Cas9 genome editing on structural, functional, and transcriptional abnormalities in DMD-associated cardiac disease. Methods and Results: We generated induced pluripotent stem cells from a patient with a deletion of exon 44 of the DMD gene (ΔEx44) and his healthy brother. We targeted exon 45 of the DMD gene by CRISPR/Cas9 genome editing to generate corrected DMD induced pluripotent stem cell lines, wherein the DMD open reading frame was restored via reframing or exon skipping. While DMD cardiomyocytes demonstrated morphological, structural, and functional deficits compared with control cardiomyocytes, cardiomyocytes from both corrected DMD lines were similar to control cardiomyocytes. Bulk RNA-sequencing of DMD cardiomyocytes showed transcriptional dysregulation consistent with dilated cardiomyopathy, which was mitigated in corrected DMD cardiomyocytes. We then corrected dysfunctional DMD cardiomyocytes by adenoviral delivery of Cas9/gRNA and showed that correction of DMD cardiomyocytes postdifferentiation reduces their arrhythmogenic potential. Single-nucleus RNA-sequencing of hearts of DMD mice showed transcriptional dysregulation in cardiomyocytes and fibroblasts, which in corrected mice was reduced to similar levels as wild-type mice. Conclusions: We show that CRISPR/Cas9-mediated correction of DMD ΔEx44 mitigates structural, functional, and transcriptional abnormalities consistent with dilated cardiomyopathy irrespective of how the protein reading frame is restored. We show that these effects extend to postnatal editing in induced pluripotent stem cell-derived cardiomyocytes and mice. These findings provide key insights into the utility of genome editing as a novel therapeutic for DMD-associated cardiomyopathy.

Funder

Welch Foundation

Foundation for the National Institutes of Health

Fondation Leducq

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3