Tubular IL-1β Induces Salt Sensitivity in Diabetes by Activating Renal Macrophages

Author:

Veiras Luciana C.1ORCID,Bernstein Ellen A.1,Cao DuoYao1,Okwan-Duodu Derick2,Khan Zakir13ORCID,Gibb David R.3,Roach Arantxa4,Skelton Rachel4ORCID,Williams Ryan M.4,Bernstein Kenneth E.13,Giani Jorge F.13ORCID

Affiliation:

1. Department of Biomedical Sciences (L.C.V., E.A.B., D.C., Z.K., K.E.B., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA.

2. Department of Pathology, Stanford University, Palo Alto, CA (D.O.-D.).

3. Department of Pathology and Laboratory Medicine (Z.K., D.R.G., K.E.B., J.F.G.), Cedars-Sinai Medical Center, Los Angeles, CA.

4. Department of Biomedical Engineering, The City College of New York‚ New York‚ NY (A.R., R.S., R.M.W.).

Abstract

Background: Chronic renal inflammation has been widely recognized as a major promoter of several forms of high blood pressure including salt-sensitive hypertension. In diabetes, IL (interleukin)-6 induces salt sensitivity through a dysregulation of the epithelial sodium channel. However, the origin of this inflammatory process and the molecular events that culminates with an abnormal regulation of epithelial sodium channel and salt sensitivity in diabetes are largely unknown. Methods: Both in vitro and in vivo approaches were used to investigate the molecular and cellular contributors to the renal inflammation associated with diabetic kidney disease and how these inflammatory components interact to develop salt sensitivity in db/db mice. Results: Thirty-four-week-old db/db mice display significantly higher levels of IL-1β in renal tubules compared with nondiabetic db/+ mice. Specific suppression of IL-1β in renal tubules prevented salt sensitivity in db/db mice. A primary culture of renal tubular epithelial cells from wild-type mice releases significant levels of IL-1β when exposed to a high glucose environment. Coculture of tubular epithelial cells and bone marrow-derived macrophages revealed that tubular epithelial cell-derived IL-1β promotes the polarization of macrophages towards a proinflammatory phenotype resulting in IL-6 secretion. To evaluate whether macrophages are the cellular target of IL-1β in vivo, diabetic db/db mice were transplanted with the bone marrow of IL-1R1 (IL-1 receptor type 1) knockout mice. db/db mice harboring an IL-1 receptor type 1 knockout bone marrow remained salt resistant, display lower renal inflammation and lower expression and activity of epithelial sodium channel compared with db/db transplanted with a wild-type bone marrow. Conclusions: Renal tubular epithelial cell-derived IL-1β polarizes renal macrophages towards a proinflammatory phenotype that promotes salt sensitivity through the accumulation of renal IL-6. When tubular IL-1β synthesis is suppressed or in db/db mice in which immune cells lack the IL-1R1, macrophage polarization is blunted resulting in no salt-sensitive hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3