Contribution of VEGF-B-Induced Endocardial Endothelial Cell Lineage in Physiological Versus Pathological Cardiac Hypertrophy

Author:

Sultan Ibrahim12ORCID,Ramste Markus12ORCID,Peletier Pim12ORCID,Hemanthakumar Karthik Amudhala12ORCID,Ramanujam Deepak34ORCID,Tirronen Annakaisa5,von Wright Ylva12ORCID,Antila Salli12ORCID,Saharinen Pipsa12ORCID,Eklund Lauri6ORCID,Mervaala Eero7,Ylä-Herttuala Seppo5ORCID,Engelhardt Stefan3ORCID,Kivelä Riikka189ORCID,Alitalo Kari12ORCID

Affiliation:

1. Wihuri Research Institute (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., R.K., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland.

2. Translational Cancer Medicine Program (I.S., M.R., P.P., K.A.H., Y.v.W., S.A., P.S., K.A.), Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Finland.

3. Institute of Pharmacology and Toxicology, Technical University of Munich, DZHK partner site Munich Heart Alliance, Germany (D.R., S.E.).

4. RNATICS GmbH, Planegg, Germany (D.R.).

5. A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland (A.T., S.Y.-H.).

6. Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Finland (L.E.).

7. Department of Pharmacology (E.M.), Faculty of Medicine, University of Helsinki, Finland.

8. Stem Cells and Metabolism Research Program (R.K.), Faculty of Medicine, University of Helsinki, Finland.

9. Faculty of Sport and Health Sciences, University of Jyväskylä, Finland (R.K.).

Abstract

BACKGROUND: Preclinical studies have shown the therapeutic potential of VEGF-B (vascular endothelial growth factor B) in revascularization of the ischemic myocardium, but the associated cardiac hypertrophy and adverse side effects remain a concern. To understand the importance of endothelial proliferation and migration for the beneficial versus adverse effects of VEGF-B in the heart, we explored the cardiac effects of autocrine versus paracrine VEGF-B expression in transgenic and gene-transduced mice. METHODS: We used single-cell RNA sequencing to compare cardiac endothelial gene expression in VEGF-B transgenic mouse models. Lineage tracing was used to identify the origin of a VEGF-B-induced novel endothelial cell population and adeno-associated virus–mediated gene delivery to compare the effects of VEGF-B isoforms. Cardiac function was investigated using echocardiography, magnetic resonance imaging, and micro-computed tomography. RESULTS: Unlike in physiological cardiac hypertrophy driven by a cardiomyocyte-specific VEGF-B transgene (myosin heavy chain alpha-VEGF-B), autocrine VEGF-B expression in cardiac endothelium (aP2 [adipocyte protein 2]-VEGF-B) was associated with septal defects and failure to increase perfused subendocardial capillaries postnatally. Paracrine VEGF-B led to robust proliferation and myocardial migration of a novel cardiac endothelial cell lineage (VEGF-B-induced endothelial cells) of endocardial origin, whereas autocrine VEGF-B increased proliferation of VEGF-B-induced endothelial cells but failed to promote their migration and efficient contribution to myocardial capillaries. The surviving aP2-VEGF-B offspring showed an altered ratio of secreted VEGF-B isoforms and developed massive pathological cardiac hypertrophy with a distinct cardiac vessel pattern. In the normal heart, we found a small VEGF-B-induced endothelial cell population that was only minimally expanded during myocardial infarction but not during physiological cardiac hypertrophy associated with mouse pregnancy. CONCLUSIONS: Paracrine and autocrine secretions of VEGF-B induce expansion of a specific endocardium-derived endothelial cell population with distinct angiogenic markers. However, autocrine VEGF-B signaling fails to promote VEGF-B-induced endothelial cell migration and contribution to myocardial capillaries, predisposing to septal defects and inducing a mismatch between angiogenesis and myocardial growth, which results in pathological cardiac hypertrophy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3