Pacing After Shocks Stronger Than the Upper Limit of Vulnerability

Author:

Chattipakorn Nipon1,Fotuhi Parwis C.1,Sreenan Catherine M.1,White James B.1,Ideker Raymond E.1

Affiliation:

1. From the Departments of Medicine (N.C., P.C.F., C.M.S., R.E.I.) and Physiology (N.C., J.B.W., R.E.I.), University of Alabama at Birmingham.

Abstract

Background —After upper-limit-of-vulnerability (ULV) shocks of the same strength and coupling interval (CI) during the T wave, (1) the epicardial activation pattern (EAP) for the first postshock cycle is indistinguishable between shocks that do (VF) and do not (NoVF) induce ventricular fibrillation (VF) and (2) ≥3 cycles in rapid succession always occur during VF but not during NoVF episodes. To study the role of these rapid cycles, rapid pacing was performed after a shock stronger than the ULV that by itself did not induce rapid cycles and VF. Methods and Results —A 504-electrode sock was sutured to the heart in 6 pigs to map EAPs. The S2 shock strength and S1-S2 CI at the ULV were determined by T-wave scanning with an up/down protocol. Ten shocks 50 to 100 V above the ULV (aULV) were delivered at the same S1-S2 CI to confirm that VF was not induced. Then, the postshock interval after aULV shocks was scanned with an S3 pacing stimulus from the LV apex until the shortest S2-S3 CI that captured was reached. This was repeated for S4, S5, etc, until VF was induced. To induce VF, 3 pacing stimuli (S3-S5) with progressively shorter CIs were required; S3 or S3, S4 never induced VF. After cycle S5, which induced VF, 2 EAP types occurred: focal (74%) and reentrant (26%). Conclusions —At least 3 cycles with short CIs are necessary for VF induction after aULV shocks. Cycles S3-S4 may create the substrate for cycle S5 to initiate VF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3