Apolipoprotein B-48 or Its Apolipoprotein B-100 Equivalent Mediates the Binding of Triglyceride-Rich Lipoproteins to Their Unique Human Monocyte-Macrophage Receptor

Author:

Gianturco Sandra H.1,Ramprasad M. P.1,Song Ruiling1,Li Ran1,Brown Matthew L.1,Bradley William A.1

Affiliation:

1. From the University of Alabama at Birmingham, Department of Medicine, Division of Gerontology and Geriatrics (S.H.G., R.S., M.L.B., W.A.B.), Birmingham, Ala; and the Department of Medicine, University of California at San Diego (M.P.R.).

Abstract

Abstract —Studies in animals and humans have demonstrated uptake of plasma chylomicrons (triglyceride-rich lipoprotein [TGRLP] of S f >400) by accessible macrophages in vivo. One potential mechanism is via a unique receptor pathway we previously identified in human blood and THP-1 monocytes and macrophages for the lipoprotein lipase (LpL)– and apolipoprotein (apo) E–independent, high-affinity, specific binding of plasma chylomicrons and hypertriglyceridemic VLDL (HTG-VLDL) to cell-surface membrane-binding proteins (MBP 200, 235; apparent M r 200, 235 kD on SDS-PAGE) that leads to lipid accumulation in vitro. Competitive binding studies reported here demonstrate that anti-apoB antibodies specifically block the high-affinity binding of TGRLP to this receptor on THP-1 cells and on ligand blots. LpL, which binds to an N-terminal domain of apoB, also inhibits TGRLP binding both to this site on THP-1s and to MBP 200, 235 by binding to apoB. Chylomicrons of S f >1100 that contain apoB-48, but not apoB-100, bind specifically to MBP 200, 235, and this binding is blocked by anti-apoB IgG. In contrast, lactoferrin and heparin do not inhibit TGRLP binding. We conclude that the receptor-binding domain is within apoB-48 (or an equivalent in apoB-100) near the LpL-binding domain, but not a heparin-binding domain. Uptake of TGRLP by this mechanism could provide essential nutrients or, in HTG, cause excess lipid accumulation and foam cell formation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3