Single-Cell Transcriptome Analysis of the Circle of Willis in a Mouse Cerebral Aneurysm Model

Author:

Martinez Alejandra N.1ORCID,Tortelote Giovane G.2ORCID,Pascale Crissey L.1ORCID,McCormack Isabella G.1ORCID,Nordham Kristen D.1ORCID,Suder Natalie J.1ORCID,Couldwell Mitchell W.1ORCID,Dumont Aaron S.1ORCID

Affiliation:

1. Department of Neurosurgery, Tulane Center for Clinical Neurosciences (A.N.M., C.L.P., I.G.M., K.D.N., N.J.S., M.W.C., A.S.D.), Tulane University School of Medicine, New Orleans, LA.

2. Department of Pediatrics and The Tulane Hypertension & Renal Center of Excellence (G.G.T.), Tulane University School of Medicine, New Orleans, LA.

Abstract

Background: The circle of Willis (CoW) is the most common location for aneurysms to form in humans. Although the major cell types of the intracranial vasculature are well known, the heterogeneity and relative contributions of the different cells in healthy and aneurysmal vessels have not been well characterized. Here, we present the first comprehensive analysis of the lineage heterogeneity and altered transcriptomic profiles of vascular cells from healthy and aneurysmal mouse CoW using single-cell RNA sequencing. Methods: Cerebral aneurysms (CAs) were induced in adult male mice using an elastase model. Single-cell RNA sequencing was then performed on CoW samples obtained from animals that either had aneurysms form or rupture 14 days post-induction. Sham-operated animals served as controls. Results: Unbiased clustering analysis of the transcriptional profiles from >3900 CoW cells identified 19 clusters representing ten cell lineages: vascular smooth muscle cells, endothelial cells fibroblasts, pericytes and immune cells (macrophages, T and B lymphocytes, dendritic cells, mast cells, and neutrophils). The 5 vascular smooth muscle cell subpopulations had distinct transcriptional profiles and were classified as proliferative, stress-induced senescent, quiescent, inflammatory-like, or hyperproliferative. The transcriptional signature of the metabolic pathways of ATP generation was found to be downregulated in 2 major vascular smooth muscle cell clusters when CA was induced. Aneurysm induction led to significant expansion of the total macrophage population, and this expansion was further increased with rupture. Both inflammatory and resolution-phase macrophages were identified, and a massive spike of neutrophils was seen with CA rupture. Additionally, the neutrophil-to-lymphocyte ratio (NLR), which originated from CA induction mirrored what happens in humans. Conclusions: Our data identify CA disease-relevant transcriptional signatures of vascular cells in the CoW and is searchable via a web-based R/shiny interface.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3