Toward Automated Detection of Silent Cerebral Infarcts in Children and Young Adults With Sickle Cell Anemia

Author:

Chen Yasheng1ORCID,Wang Yan1ORCID,Phuah Chia-Ling1ORCID,Fields Melanie E.2ORCID,Guilliams Kristin P.3ORCID,Fellah Slim1ORCID,Reis Martin N.4,Binkley Michael M.1ORCID,An Hongyu14ORCID,Lee Jin-Moo14ORCID,McKinstry Robert C.4ORCID,Jordan Lori C.5ORCID,DeBaun Michael R.6ORCID,Ford Andria L.14ORCID

Affiliation:

1. Department of Neurology (Y.C., Y.W., C.-L.P., S.F., M.M.B., H.A., J.-M.L., A.L.F.), Washington University School of Medicine, St. Louis, MO.

2. Division of Pediatric Hematology/Oncology (M.E.F.), Washington University School of Medicine, St. Louis, MO.

3. Division of Pediatric Neurology (K.P.G.), Washington University School of Medicine, St. Louis, MO.

4. Mallinckrodt Institute of Radiology (M.N.R., H.A., J.-M.L., R.C.M., A.L.F.), Washington University School of Medicine, St. Louis, MO.

5. Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University of Medicine, Nashville, TN (L.C.J.).

6. Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN (M.R.D.).

Abstract

BACKGROUND: Silent cerebral infarcts (SCI) in sickle cell anemia (SCA) are associated with future strokes and cognitive impairment, warranting early diagnosis and treatment. Detection of SCI, however, is limited by their small size, especially when neuroradiologists are unavailable. We hypothesized that deep learning may permit automated SCI detection in children and young adults with SCA as a tool to identify the presence and extent of SCI in clinical and research settings. METHODS: We utilized UNet—a deep learning model—for fully automated SCI segmentation. We trained and optimized UNet using brain magnetic resonance imaging from the SIT trial (Silent Infarct Transfusion). Neuroradiologists provided the ground truth for SCI diagnosis, while a vascular neurologist manually delineated SCI on fluid-attenuated inversion recovery and provided the ground truth for SCI segmentation. UNet was optimized for the highest spatial overlap between automatic and manual delineation (dice similarity coefficient). The optimized UNet was externally validated using an independent single-center prospective cohort of SCA participants. Model performance was evaluated through sensitivity and accuracy (%correct cases) for SCI diagnosis, dice similarity coefficient, intraclass correlation coefficient (metric of volumetric agreement), and Spearman correlation. RESULTS: The SIT trial (n=926; 31% with SCI; median age, 8.9 years) and external validation (n=80; 50% with SCI; age, 11.5 years) cohorts had small median lesion volumes of 0.40 and 0.25 mL, respectively. Compared with the neuroradiology diagnosis, UNet predicted SCI presence with 100% sensitivity and 74% accuracy. In magnetic resonance imaging with SCI, UNet reached a moderate spatial agreement (dice similarity coefficient, 0.48) and high volumetric agreement (intraclass correlation coefficient, 0.76; ρ=0.72; P <0.001) between automatic and manual segmentations. CONCLUSIONS: UNet, trained using a large pediatric SCA magnetic resonance imaging data set, sensitively detected small SCI in children and young adults with SCA. While additional training is needed, UNet may be integrated into the clinical workflow as a screening tool, aiding in SCI diagnosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Artificial Intelligence Advances in Detection and Diagnosis of Sickle Cell Disease: A review;2023 IEEE International Conference on Big Data (BigData);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3