A Change in Inflammatory Footprint Precedes Plaque Instability: A Systematic Evaluation of Cellular Aspects of the Adaptive Immune Response in Human Atherosclerosis

Author:

van Dijk R. A.1,Duinisveld A. J. F.1,Schaapherder A. F.2,Mulder‐Stapel A.1,Hamming J. F.1,Kuiper J.3,de Boer O. J.4,van der Wal A. C.4,Kolodgie F. D.5,Virmani R.5,Lindeman J. H. N.1

Affiliation:

1. Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands

2. Department of Transplantation Surgery, Leiden University Medical Center, Leiden, The Netherlands

3. Gorlaeus Laboratories, Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands

4. Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands

5. CVPath Institute Inc., Gaithersburg, MD

Abstract

Background Experimental studies characterize adaptive immune response as a critical factor in the progression and complications of atherosclerosis. Yet, it is unclear whether these observations translate to the human situation. This study systematically evaluates cellular components of the adaptive immune response in a biobank of human aortas covering the full spectrum of atherosclerotic disease. Methods and Results A systematic analysis was performed on 114 well‐characterized perirenal aortic specimens with immunostaining for T‐cell subsets (CD3/4/8/45RA/45RO/FoxP3) and the Th1/non‐Th1/Th17 ratio (CD4 + T‐bet + /CD4 + T‐bet /CD4 + /interleukin‐17 + double staining). CD20 and CD138 were used to identify B cells and plasma cells, while B‐cell maturation was evaluated by AID/CD21 staining and expression of lymphoid homeostatic CXCL13. Scattered CD4 and CD8 cells with a T memory subtype were found in normal aorta and early, nonprogressive lesions. The total number of T cells increases in progressive atherosclerotic lesions (≈1:5 CD4/CD8 T‐cell ratio). A further increase in medial and adventitial T cells is found upon progression to vulnerable lesions. This critical stage is further hallmarked by de novo formation of adventitial lymphoidlike structures containing B cells and plasma cells, a process accompanied by transient expression of CXCL13. A dramatic reduction of T‐cell subsets, disappearance of lymphoid structures, and loss of CXCL13 expression characterize postruptured lesions. FoxP3 and Th17 T cells were minimally present throughout the atherosclerotic process. Conclusions Transient CXCL13 expression, restricted presence of B cells in human atherosclerosis, along with formation of nonfunctional extranodal lymphoid structures in the phase preceding plaque rupture, indicates a “critical” change in the inflammatory footprint before and during plaque destabilization.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3