Nimodipine attenuates both increase in cytosolic free calcium and histologic damage following focal cerebral ischemia and reperfusion in cats.

Author:

Uematsu D1,Greenberg J H1,Hickey W F1,Reivich M1

Affiliation:

1. Department of Neurology, University of Pennsylvania, Philadelphia 19104-6063.

Abstract

To clarify the mechanism of its effect on ischemic stroke, we investigated the effect of nimodipine, a dihydropyridine calcium antagonist, on changes in cytosolic free calcium, cortical blood flow, and histologic changes following focal cerebral ischemia and reperfusion in 14 cats. Using indo-1, a fluorescent intracellular Ca2+ indicator, we simultaneously measured changes in the Ca2+ signal ratio (400:506 nm), reduced nicotinamide adenine dinucleotide fluorescence (464 nm), and reflectance (340 nm) during an ultraviolet excitation (340 nm) directly from the cat cortex in vivo. In six cats treated with vehicle only, the calcium signal ratio increased from 5 minutes after middle cerebral artery occlusion to 30 minutes into reperfusion. The elevation of cytosolic free calcium was significantly attenuated by nimodipine, which was administered by intravenous infusion in eight cats starting 5 minutes after occlusion. Nimodipine had no effect on cortical blood flow during ischemia but induced a hyperperfused state following reperfusion. Nimodipine did not modify changes in the mitochondrial oxidation-reduction state. Nimodipine proved to have beneficial effects on recovery of the electroencephalogram following reperfusion as well as on the extent of focal histologic damage. Our results suggest that nimodipine, when administered during the early stage of focal ischemia, can favorably modify the outcome of stroke by reducing the Ca2+ entry during both the ischemic and reperfusion periods.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3