Modification of hypoxia-induced injury in cultured rat astrocytes by high levels of glucose.

Author:

Kelleher J A1,Chan P H1,Chan T Y1,Gregory G A1

Affiliation:

1. Department of Neurology, School of Medicine, University of California, San Francisco.

Abstract

Preexisting hyperglycemia exacerbates central nervous system injury after transient global and focal cerebral ischemia. Increased anaerobic metabolism with resultant lactic acidosis has been shown to cause the hyperglycemic, neuronal injury. The contribution of astrocytes in producing lactic acidosis under hyperglycemic/ischemic conditions is unclear, whereas the protective role of astrocytes in ischemic-induced neuronal injury has been documented. The ability of astrocytes to maintain energy status and ion homeostasis under hyperglycemic conditions could ultimately reduce neuronal injury. Therefore, we determined the effects of increased glucose concentrations on glucose utilization, lactate production, extracellular pH, and adenosine triphosphate concentrations in hypoxia-treated astrocyte cultures. Primary astrocytes were prepared from neonatal rat cerebral cortices. After 35 days in vitro, cultures were incubated with 0-60 mmol/L glucose and subjected to hypoxic conditions at 95% N2/5% CO2 for 24 hours. In addition, under high-glucose conditions (30 mmol/L), astrocytes were exposed to up to 72 hours of hypoxia. Determination of lactate dehydrogenase efflux, adenosine triphosphate concentrations, and extracellular lactate concentrations defined astrocyte status. Equiosmolar levels of mannitol were added in place of high glucose concentrations to distinguish hyperosmotic effect. When physiological concentrations of glucose (7.5 mmol/L) or lower concentrations were used, significant cell damage occurred with 24 hours of hypoxia, as determined by increased efflux of lactate dehydrogenase and loss of cell protein. When higher glucose concentrations (15-60 mmol/L) were used, efflux of lactate dehydrogenase was similar to that observed in normoxic cultures, despite an increased utilization of glucose. Lactate concentrations in the media at low or normal glucose concentrations exceeded normoxic levels, but higher glucose concentrations (15-30 mmol/L) failed to increase lactate levels further. Values of adenosine triphosphate for hypoxic astrocytes treated with high glucose concentrations were significantly higher than those of astrocytes with zero or low glucose levels. In cultures exposed to hypoxia and high glucose levels (30 mmol/L), no cellular injury was observed before 48 hours of hypoxia. Lactate concentrations in the media increased during the first 24 hours of hypoxia and reached steady state. The pH of the media decreased to 6.4 after 24 hours and 5.5 at 48 hours. The latter pH was concomitant with a marked increase in extracellular lactate dehydrogenase activity. Hyperosmotic mannitol failed to protect cultured astrocytes against hypoxia. Hypoxic injury to mature astrocytes was reduced by the presence of 15-60 mmol/L glucose in the medium during 24-30 hours of hypoxia. Injury occurred when the pH of the medium was < 5.5. This protection was not afforded by the hyperosmotic effect of high glucose concentrations, nor was the hypoxic injury at later time periods with 30 mmol/L glucose mediated solely by lactate accumulation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3