A New Method for Predicting Recovery After Stroke

Author:

Tilling Kate1,Sterne Jonathan A.C.1,Rudd Anthony G.1,Glass Thomas A.1,Wityk Robert J.1,Wolfe Charles D.A.1

Affiliation:

1. From the Department of Public Health Sciences, King’s College London, London, UK (K.T., C.D.A.W.); Department of Social Medicine, University of Bristol, Bristol, UK (J.A.C.S.); Elderly Care Unit, Guy’s King’s and St Thomas’ School of Medicine, St Thomas’ Hospital, London, UK (A.G.R.); and Department of Epidemiology, Johns Hopkins School of Hygiene and Public Health (T.A.G.), and Department of Neurology, Johns Hopkins School of Medicine (R.J.W.), Baltimore, Md.

Abstract

Background and Purpose Several prognostic factors have been identified for outcome after stroke. However, there is a need for empirically derived models that can predict outcome and assist in medical management during rehabilitation. To be useful, these models should take into account early changes in recovery and individual patient characteristics. We present such a model and demonstrate its clinical utility. Methods Data on functional recovery (Barthel Index) at 0, 2, 4, 6, and 12 months after stroke were collected prospectively for 299 stroke patients at 2 London hospitals. Multilevel models were used to model recovery trajectories, allowing for day-to-day and between-patient variation. The predictive performance of the model was validated with an independent cohort of 710 stroke patients. Results Urinary incontinence, sex, prestroke disability, and dysarthria affected the level of outcome after stroke; age, dysphasia, and limb deficit also affected the rate of recovery. Applying this to the validation cohort, the average difference between predicted and observed Barthel Index was −0.4, with 90% limits of agreement from −7 to 6. Predicted Barthel Index lay within 3 points of the observed Barthel Index on 49% of occasions and improved to 69% when patients’ recovery histories were taken into account. Conclusions The model predicts recovery at various stages of rehabilitation in ways that could improve clinical decision making. Predictions can be altered in light of observed recovery. This model is a potentially useful tool for comparing individual patients with average recovery trajectories. Patients at elevated risk could be identified and interventions initiated.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3