Perfect Match: Radiomics and Artificial Intelligence in Cardiac Imaging

Author:

Baeßler Bettina1ORCID,Engelhardt Sandy23,Hekalo Amar1ORCID,Hennemuth Anja45678,Hüllebrand Markus4567ORCID,Laube Ann457ORCID,Scherer Clemens910ORCID,Tölle Malte23,Wech Tobias111ORCID

Affiliation:

1. Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Germany (B.B., A. Hekalo, T.W.).

2. Department of Internal Medicine III, Heidelberg University Hospital, Germany (S.E., M.T.).

3. DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim (S.E., M.T.).

4. Deutsches Herzzentrum der Charité, Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany (A. Hennemuth, M.H., A.L.).

5. Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Germany (A. Hennemuth, M.H., A.L.).

6. Fraunhofer Institute for Digital Medicine MEVIS, Berlin, Germany (A. Hennemuth, M.H.).

7. DZHK (German Centre for Cardiovascular Research), partner site Berlin (A. Hennemuth, M.H., A.L.).

8. Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Germany (A. Hennemuth).

9. Department of Medicine I, LMU University Hospital, LMU Munich, Germany (C.S.).

10. Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), Germany (C.S.).

11. Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany (T.W.).

Abstract

Cardiovascular diseases remain a significant health burden, with imaging modalities like echocardiography, cardiac computed tomography, and cardiac magnetic resonance imaging playing a crucial role in diagnosis and prognosis. However, the inherent heterogeneity of these diseases poses challenges, necessitating advanced analytical methods like radiomics and artificial intelligence. Radiomics extracts quantitative features from medical images, capturing intricate patterns and subtle variations that may elude visual inspection. Artificial intelligence techniques, including deep learning, can analyze these features to generate knowledge, define novel imaging biomarkers, and support diagnostic decision-making and outcome prediction. Radiomics and artificial intelligence thus hold promise for significantly enhancing diagnostic and prognostic capabilities in cardiac imaging, paving the way for more personalized and effective patient care. This review explores the synergies between radiomics and artificial intelligence in cardiac imaging, following the radiomics workflow and introducing concepts from both domains. Potential clinical applications, challenges, and limitations are discussed, along with solutions to overcome them.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3