Osteopontin

Author:

Scatena Marta1,Liaw Lucy1,Giachelli Cecilia M.1

Affiliation:

1. From the Department of Bioengineering (M.S., C.M.G.), University of Washington, Seattle; and the Maine Medical Center Research Institute (L.L.), Scarborough.

Abstract

Osteopontin (OPN) is a multifunctional molecule highly expressed in chronic inflammatory and autoimmune diseases, and it is specifically localized in and around inflammatory cells. OPN is a secreted adhesive molecule, and it is thought to aid in the recruitment of monocytes-macrophages and to regulate cytokine production in macrophages, dendritic cells, and T-cells. OPN has been classified as T-helper 1 cytokine and thus believed to exacerbate inflammation in several chronic inflammatory diseases, including atherosclerosis. Besides proinflammatory functions, physiologically OPN is a potent inhibitor of mineralization, it prevents ectopic calcium deposits and is a potent inducible inhibitor of vascular calcification. Clinically, OPN plasma levels have been found associated with various inflammatory diseases, including cardiovascular burden. It is thus imperative to dissect the OPN proinflammatory and anticalcific functions. OPN recruitment functions of inflammatory cells are thought to be mediated through its adhesive domains, especially the arginine-glycine-aspartate (RGD) sequence that interacts with several integrin heterodimers. However, the integrin receptors and intracellular pathways mediating OPN effects on immune cells are not well established. Furthermore, several studies show that OPN is cleaved by at least 2 classes of proteases: thrombin and matrix-metalloproteases (MMPs). Most importantly, at least in vitro , fragments generated by cleavage not only maintain OPN adhesive functions but also expose new active domains that may impart new activities. The role for OPN proteolytic fragments in vivo is almost completely unexplored. We believe that further knowledge of the effects of OPN fragments on cell responses might help in designing therapeutics targeting inflammatory and cardiovascular diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 536 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3