Induction of Lysosomal Biogenesis in Atherosclerotic Macrophages Can Rescue Lipid-Induced Lysosomal Dysfunction and Downstream Sequelae

Author:

Emanuel Roy1,Sergin Ismail1,Bhattacharya Somashubhra1,Turner Jaleisa N.1,Epelman Slava1,Settembre Carmine1,Diwan Abhinav1,Ballabio Andrea1,Razani Babak1

Affiliation:

1. From the Cardiovascular Division, Department of Medicine (R.E., I.S., S.B., S.E., A.D., B.R.) and Department of Pathology and Immunology (J.N.T., B.R.), Washington University School of Medicine, St. Louis, MO; John Cochran VA Medical Center, St Louis, MO (A.D.); Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy (C.S., A.B.); and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX (C.S., A.B.).

Abstract

Objective— Recent reports of a proatherogenic phenotype in mice with macrophage-specific autophagy deficiency have renewed interest in the role of the autophagy-lysosomal system in atherosclerosis. Lysosomes have the unique ability to process both exogenous material, including lipids and autophagy-derived cargo such as dysfunctional proteins/organelles. We aimed to understand the effects of an atherogenic lipid environment on macrophage lysosomes and to evaluate novel ways to modulate this system. Approach and Results— Using a variety of complementary techniques, we show that oxidized low-density lipoproteins and cholesterol crystals, commonly encountered lipid species in atherosclerosis, lead to profound lysosomal dysfunction in cultured macrophages. Disruptions in lysosomal pH, proteolytic capacity, membrane integrity, and morphology are readily seen. Using flow cytometry, we find that macrophages isolated from atherosclerotic plaques also display features of lysosome dysfunction. We then investigated whether enhancing lysosomal function can be beneficial. Transcription factor EB (TFEB) is the only known transcription factor that is a master regulator of lysosomal biogenesis although its role in macrophages has not been studied. Lysosomal stress induced by chloroquine or atherogenic lipids leads to TFEB nuclear translocation and activation of lysosomal and autophagy genes. TFEB overexpression in macrophages further augments this prodegradative response and rescues several deleterious effects seen with atherogenic lipid loading as evidenced by blunted lysosomal dysfunction, reduced secretion of the proinflammatory cytokine interleukin-1β, enhanced cholesterol efflux, and decreased polyubiquitinated protein aggregation. Conclusions— Taken together, these data demonstrate that lysosomal function is markedly impaired in atherosclerosis and suggest that induction of a lysosomal biogenesis program in macrophages has antiatherogenic effects.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 186 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3