Top-resolution frequency analysis of electrocardiogram with adaptive frequency determination. Identification of late potentials in patients with coronary artery disease.

Author:

Haberl R1,Schels H F1,Steinbigler P1,Jilge G1,Steinbeck G1

Affiliation:

1. Medical Hospital I, University of Munich, FRG.

Abstract

Frequency analysis of the electrocardiogram with Fourier transform is a sensitive method of detecting late potentials. However, information about localization of late potentials is lost, frequency resolution is poor, and window functions have to be applied. We therefore analyzed multiple segments (25 msec long) of the surface electrocardiogram ("spectrotemporal mapping") with adaptive frequency determination (AFD), an autoregressive algorithm that is characterized by high-frequency resolution in very short segments without the use of window functions. Results were compared with those from Fourier transform and the Simson method. We studied 38 patients after myocardial infarction (MI) with sustained ventricular tachycardia (VT), 21 patients after MI without VT, and 18 healthy subjects. Frequency peaks could be clearly differentiated until a minimal interval of 6 Hz; with fast Fourier transform (Blackman Harris window) in a much longer segment (80 msec), the spectral peaks merged into one another at an interval of about 30 Hz. AFD revealed high-frequency components as narrow peaks in the range of 40-160 Hz in 28 of 38 patients (74%) after MI with VT. Because of the short segment size, exact localization of late potentials was possible; in most of the patients, the peaks occurred in segments inside the QRS complex and ended 20 +/- 10 msec after termination of the QRS complex. In patients after MI without VT, only four of 21 patients (19%) had spectral peaks in segments after the end of the QRS complex; however, 13 of 21 patients demonstrated microvolt potentials in segments within the QRS complex. These potentials did not extend beyond the end of normal ventricular activation. Only two of 18 healthy subjects showed abnormal AFD results. Patients with bundle branch block did not need to be excluded. AFD allowed good differentiation between late potentials and noise by a characteristic pattern of the spectral peaks. For the Simson method, patients with bundle branch block had to be excluded, and overall sensitivity was 42%. In five cases, the cause of failure of the Simson method could be identified as incorrect determination of the QRS limits due to noise. Thus, AFD is a promising method for detailed analysis of late potentials; it combines the advantages of frequency analysis (good differentiation between signal and noise and high-pass filters not necessary) and time domain analysis (localization of late potentials).

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3