Affiliation:
1. Department of Anesthesiology, University of California, San Francisco.
Abstract
BACKGROUND
Although oxygen inhalation therapy has long been used in the treatment of acute myocardial ischemia, experimental evidence that increased arterial PO2 has any beneficial effect in the absence of hypoxemia is equivocal. In this study, we used a swine model of subendocardial myocardial ischemia to determine the effects of arterial hyperoxia on regional myocardial contractile function (sonomicrometry), myocardial blood flow distribution (microspheres), and regional myocardial glycolytic metabolism (carbon isotope-labeled substrates).
METHODS AND RESULTS
In 10 domestic swine, the left anterior descending coronary artery was cannulated and flow to this artery was strictly controlled via a roller pump in the perfusion circuit. Arterial PO2 was controlled by manipulating inspired oxygen concentration (FIO2). Low-flow myocardial ischemia was induced by reducing pump flow to 50% of the control value, which diminished regional endocardial systolic shortening to 30-50% of normal. After a 15-minute period of flow stability, each animal was exposed in randomized order to two additional 15-minute experimental periods: coronary normoxia (PO2 = 90-110 mm Hg) and coronary hyperoxia (PO2 greater than 400 mm Hg). At each level of oxygenation, we measured regional myocardial function, regional myocardial blood flow and metabolism, and hemodynamic indexes of myocardial oxygen demand. Myocardial ischemia during normoxia reduced systolic shortening to 10.9 +/- 5.3% in the ischemic zone. Hyperoxia increased ischemic zone systolic shortening substantially to 15.2 +/- 4.6%. During myocardial ischemia, endocardial blood flow was decreased to 0.26 +/- 0.06 ml.g-1.min-1 in the ischemic zone. During hyperoxia, endocardial blood flow rose to 0.34 +/- 0.10 ml.g-1.m-1. The endocardial: epicardial flow ratio was 0.45 +/- 0.18 in the initial ischemia period and rose to 0.61 +/- 0.23 in the hyperoxic period. Myocardial ischemia increased regional uptake of glucose, conversion of glucose to released lactate, and net myocardial lactate release. In the ischemic myocardium, coronary hyperoxia decreased both chemically measured lactate production and isotopically measured lactate release and decreased glucose extraction and the conversion of glucose to lactate.
CONCLUSIONS
These data demonstrate for the first time that increasing arterial PO2 to high levels during acute low-flow myocardial ischemia improves both function and flow distribution in the ischemic myocardium and decreases glycolytic metabolism in the ischemic zone. The degree of improvement in contractile function (5% absolute increase in systolic shortening or 25% change normalized to preischemic values) is consistent with the observed increase in subendocardial blood flow.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献