Afadin Facilitates Vascular Endothelial Growth Factor–Induced Network Formation and Migration of Vascular Endothelial Cells by Inactivating Rho-Associated Kinase Through ArhGAP29

Author:

Tagashira Toru1,Fukuda Terunobu1,Miyata Muneaki2,Nakamura Kazuha2,Fujita Hidenobu3,Takai Yoshimi4,Hirata Ken-ichi1,Rikitake Yoshiyuki23

Affiliation:

1. From the Division of Cardiovascular Medicine, Department of Internal Medicine (T.T., T.F., K.-i.H.)

2. Division of Signal Transduction, Department of Biochemistry and Molecular Biology (M.M., K.N., Y.R.)

3. Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Japan (H.F., Y.R.).

4. Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology (Y.T.), Kobe University Graduate School of Medicine, Japan

Abstract

Objective— We previously reported that afadin, an actin filament-binding protein, regulated vascular endothelial growth factor–induced angiogenesis. However, the underlying molecular mechanisms are poorly understood. Here, we investigated the mechanisms of how Rho-associated kinase is activated in afadin-knockdown human umbilical vein endothelial cells (HUVECs) and how its activation is involved in defects of vascular endothelial growth factor–induced network formation and migration of the cells. Approach and Results— Knockdown of afadin or ArhGAP29, a GTPase-activating protein for RhoA, increased Rho-associated kinase activity and reduced the vascular endothelial growth factor–induced network formation and migration of cultured HUVECs, accompanied by the defective formation of membrane protrusions, such as lamellipodia and peripheral ruffles. Treatment of the afadin- or ArhGAP29-knockdown HUVECs with Rho-associated kinase inhibitors, Y-27632 or fasudil, partially restored the reduced network formation and migration as well as the defective formation of membrane protrusions. ArhGAP29 bound to afadin and was colocalized with afadin at the leading edge of migrating HUVECs. The defective formation of membrane protrusions in ArhGAP29-knockdown HUVECs was restored by expression of mutant ArhGAP29 that bound to afadin and contained a RhoGAP domain but not mutant ArhGAP29 that could bind to afadin and lacked the RhoGAP domain or mutant ArhGAP29 that could not bind to afadin and contained the RhoGAP domain. This suggested the requirement of both the interaction of afadin with ArhGAP29 and RhoGAP activity of ArhGAP29 for migration of HUVECs. Conclusions— Our results highlight a critical role of the afadin–ArhGAP29 axis for the regulation of Rho-associated kinase activity during vascular endothelial growth factor–induced network formation and migration of HUVECs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3