Epoxycholesterol Impairs Cholesteryl Ester Hydrolysis in Macrophage Foam Cells, Resulting in Decreased Cholesterol Efflux

Author:

Ouimet Mireille1,Wang Ming-Dong1,Cadotte Natalie1,Ho Kenneth1,Marcel Yves L.1

Affiliation:

1. From the Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, and Departments of Biochemistry, Microbiology, and Immunology, and Pathology and Laboratory Medicine, University of Ottawa, Ontario, Canada.

Abstract

Objective— Strategies to inhibit or reverse cholesterol accumulation in macrophages have been shown to be atheroprotective. Notably, the administration of LXR agonists upregulates key players in the reverse cholesterol transport pathway, including the ABCA1 and ABCG1 transporters. However, the effects of natural LXR activators, oxysterols, on lipid-laden macrophages remains elusive. Methods and Results— We assessed the ability of 2 oxysterols, 22(R)-hydroxycholesterol (22-OH) and 24(S),25-epoxycholesterol (epoxycholesterol), to promote cholesterol efflux to apoA-I from LDL- and modified LDL-labeled and loaded macrophages and thus rescue the phenotype associated with the accumulation of cellular cholesterol in these cells. In macrophages labeled with LDL-derived cholesterol, epoxycholesterol treatment enhances ABCA1-mediated cholesterol efflux. In contrast, in AcLDL-loaded macrophages, epoxycholesterol treatment decreases cholesterol efflux to apoA-I, despite a dramatic increase in the expression of ABCA1 in response to epoxycholesterol treatment. We show that the decreased efflux is attributable to impaired cholesterol mobilization from lipid droplets, resulting from decreased cholesteryl ester hydrolase activity. Conclusion— Epoxycholesterol impairs cholesteryl ester hydrolysis activity in macrophage foam cells, thus reducing the availability of cholesterol for efflux to cholesterol acceptors.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3