Extracellular Vesicles Activate a CD36-Dependent Signaling Pathway to Inhibit Microvascular Endothelial Cell Migration and Tube Formation

Author:

Ramakrishnan Devi Prasadh1,Hajj-Ali Rula A.1,Chen Yiliang1,Silverstein Roy L.1

Affiliation:

1. From the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH (D.P.R.); Laboratory of Vascular Pathobiology, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI (D.P.R., Y.C., R.L.S.); Department of Rheumatologic and Immunologic Disease, Orthopedic and Rheumatologic Institute, Cleveland Clinic Foundation, Cleveland, OH (R.A.H.-A.); and Department of Medicine, Medical College of Wisconsin, Milwaukee, WI (R.L.S.).

Abstract

Objective— Literature on the effect of cell-derived extracellular vesicles (EV), ≤1 μm vesicles shed from various cell types during activation or apoptosis, on microvascular endothelial cell (MVEC) signaling is conflicting. Thrombospondin-1 and related proteins induce anti-angiogenic signals in MVEC via CD36. CD36 binds EV via phosphatidylserine exposed on their surface but the effects of this interaction on MVEC functions are not known. We hypothesized that EV would inhibit angiogenic MVEC functions via CD36. Approach and Results— EV generated in vitro from various cell types or isolated from plasma inhibited MVEC tube formation in in vitro matrigel assays and endothelial cell migration in Boyden chamber assays. Exosomes derived from the same cells did not have inhibitory activity. Inhibition of migration required endothelial cell expression of CD36. In mouse in vivo matrigel plug assays, EV inhibited cell migration into matrigel plugs in wild type but not in cd36 null animals. Annexin V, an anionic phospholipid binding protein, when incubated with EV partially reversed inhibition of migration, suggesting a phosphatidylserine-dependent effect. EV exposure induced reactive oxygen species generation in MVEC in a NADPH oxidase and Src family kinase–dependent manner, and their inhibition by apocynin and PP2, respectively, partially reversed the EV-mediated inhibition of migration. Annexin V partially reversed EV-induced reactive oxygen species generation in murine CD36 cDNA–transfected HVUEC but not in CD36-negative human umbilical vein endothelial cell. Conclusions— These studies establish a general inhibitory effect of EV on endothelial cell proangiogenic responses and identify a CD36-mediated mechanistic pathway through which EV inhibit MVEC migration and tube formation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3