Liver X Receptor Regulates Arachidonic Acid Distribution and Eicosanoid Release in Human Macrophages

Author:

Ishibashi Minako1,Varin Alexis1,Filomenko Rodolphe1,Lopez Tatiana1,Athias Anne1,Gambert Philippe1,Blache Denis1,Thomas Charles1,Gautier Thomas1,Lagrost Laurent1,Masson David1

Affiliation:

1. From the Centre de Recherche INSERM UMR866, Université de Bourgogne, Dijon, France (M.I., A.V., T.L., P.G., D.B., C.T., T.G., L.L., D.M.); Structure Fédérative de Recherche Santé-STIC, Université de Bourgogne, Dijon, France (M.I., A.V., R.F., T.L., A.A., P.G., D.B., C.T., T.G., L.L., D.M.); and Centre Hospitalier Universitaire Dijon, Hôpital du Bocage, Dijon, France (P.G., L.L., D.M.).

Abstract

Objective— Liver X receptors (LXRs) are oxysterol-activated nuclear receptors that are highly expressed in macrophages and regulate lipid homeostasis and inflammation. Among putative LXR target genes, lysophosphatidylcholine acyltransferase 3 (LPCAT3) involved in the Lands cycle controls the fatty acid composition at the sn-2 position of glycerophospholipids and, therefore, the availability of fatty acids, such as arachidonic acid (AA), used for eicosanoid synthesis. The aim of our study was to determine whether LXRs could regulate the Lands cycle in human macrophages, to assess the consequences in terms of lipid composition and inflammatory response, and to work out the relative contribution of LPCAT3 to the observed changes. Approach and Results— Transcriptomic analysis revealed that LPCAT3 was upregulated by LXR agonists in human macrophages. Accordingly, LXR stimulation significantly increased lysophospholipid acyltransferase activity catalyzed by LPCAT3. Lipidomic analysis demonstrated that LXR activation increased the AA content in the polar lipid fraction, specifically in phosphatidylcholines. The LXR-mediated effects on AA distribution were abolished by LPCAT3 silencing, and a redistribution of AA toward the neutral lipid fraction was observed in this context. Finally, we observed that preconditioning of human macrophages by LXR agonist treatment increased the release of arachidonate-derived eicosanoids, such as prostaglandin E 2 and thromboxane after lipopolysaccharide stimulation, with a significant attenuation by LPCAT3 silencing. Conclusions— Altogether, our data demonstrate that the LXR-mediated induction of LPCAT3 primes human macrophages for subsequent eicosanoid secretion by increasing the pool of AA, which can be mobilized from phospholipids.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3