Platelet Mechanotransduction: Regulatory Cross Talk Between Mechanosensitive Receptors and Calcium Channels

Author:

Mammadova-Bach Elmina12,Gudermann Thomas13ORCID,Braun Attila1ORCID

Affiliation:

1. Walther Straub Institute for Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Germany (E.M.-B., T.G., A.B.).

2. Division of Nephrology, Department of Medicine IV, Ludwig Maximilian University Hospital, Munich, Germany (E.M.-B.).

3. German Center for Lung Research, Munich, Germany (T.G.).

Abstract

Blood flow–induced hemodynamic changes result in mechanical stress on blood cells and vessel walls. Increased shear stress can activate platelets and other circulating cells, triggering the rapid activation of receptors, calcium channels, and related signaling mechanisms. Shear stress can also modify the folding of extracellular molecules and directly activate mechanosensitive receptors and calcium channels. The mechanical movement of the extracellular matrix and the intracellular cortical actin cytoskeleton can change the conformation of platelet receptors and gate channel pores in the plasma membrane. Mechanosensitive platelet receptors and their downstream signaling events and metabolic products can also indirectly activate calcium channels. While the molecular composite of mechanotransduction pathways has been described in mammals, shear stress–induced platelet receptors and their cross talk with calcium channels have been incompletely characterized. In this review, we discuss current knowledge about the role of mechanosensitive platelet receptors and calcium channels in shear-dependent platelet activation and arterial thrombus formation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3