Telmisartan Exerts Pleiotropic Effects in Endothelial Cells and Promotes Endothelial Cell Quiescence and Survival

Author:

Siragusa Mauro1,Sessa William C.1

Affiliation:

1. From the Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, CT.

Abstract

Objective— Telmisartan, an angiotensin II type 1 receptor blocker, and amlodipine, a calcium channel blocker, are antihypertensive agents clinically used as monotherapy or in combination. They exert beneficial cardiovascular effects independently of blood pressure lowering and classic mechanisms of action. In this study, we investigate molecular mechanisms responsible for the off-target effects of telmisartan and telmisartan–amlodipine in endothelial cells (ECs), using an unbiased genomic approach. Approach and Results— In human umbilical vein ECs, microarray analysis of gene expression followed by pathway enrichment analysis and quantitative polymerase chain reaction validation revealed that telmisartan modulates the expression of key genes responsible for cell cycle progression and apoptosis. Amlodipine’s effect was similar to control. ECs exposed to telmisartan, but not amlodipine, losartan, or valsartan, exhibited a dose-dependent impairment of cell growth and failed to enter the S-phase of the cell cycle. Similarly, telmisartan inhibited proliferation in COS-7 cells lacking the angiotensin II type 1 receptor. In telmisartan-treated ECs, phosphorylation and activation of Akt, as well as MDM2, were reduced, leading to accumulation of p53 in the nucleus, where it represses the transcription of cell cycle–promoting genes. Phosphorylation of glycogen synthase kinase-3β was also reduced, resulting in rapid proteolytic turnover of CyclinD1. Telmisartan induced downregulation of proapoptotic genes and protected ECs from serum starvation–induced and 7-ketocholesterol–induced apoptosis. Conclusions— Telmisartan exerts antiproliferative and antiapoptotic effects in ECs. This may account for the improved endothelial dysfunction observed in the clinical setting.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3