Role of Noncanonical Wnt Signaling Pathway in Human Aortic Valve Calcification

Author:

Albanese Isabella1,Yu Bin1,Al-Kindi Hamood1,Barratt Bianca1,Ott Leah1,Al-Refai Mohammad1,de Varennes Benoit1,Shum-Tim Dominique1,Cerruti Marta1,Gourgas Ophélie1,Rhéaume Eric1,Tardif Jean-Claude1,Schwertani Adel1

Affiliation:

1. From the Division of Cardiology and Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada (I.A., B.Y., H.A.-K., B.B., L.O., M.A.-R., B.d.V., D.S.-T., A.S.); Department of Material Engineering, McGill University, Montreal, Quebec, Canada (M.C., O.G.); and Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (E.R., J.C.T.).

Abstract

Objective— The mechanisms underlying the pathogenesis of aortic valve calcification remain unclear. With accumulating evidence demonstrating that valve calcification recapitulates bone development, the crucial roles of noncanonical Wnt ligands WNT5a, WNT5b, and WNT11 in osteogenesis make them critical targets in the study of aortic valve calcification. Approach and Results— Using immunohistochemistry, real-time qPCR, Western blotting, and tissue culture, we examined the tissue distribution of WNT5a, WNT5b, and WNT11 in noncalcified and calcified aortic valves and their effects on human aortic valve interstitial cells (HAVICs). Only focal strong immunostaining for WNT5a was seen in and around areas of calcification. Abundant immunostaining for WNT5b and WNT11 was seen in inflammatory cells, fibrosis, and activated myofibroblasts in areas of calcified foci. There was significant correlation between WNT5b and WNT11 overall staining and presence of calcification, lipid score, fibrosis, and microvessels ( P <0.05). Real-time qPCR and Western blotting revealed abundant expression of both Wnts in stenotic aortic valves, particularly in bicuspid valves. Incubation of HAVICs from noncalcified valves with the 3 noncanonical Wnts significantly increased cell apoptosis and calcification ( P <0.05). Treatment of HAVICs with the mitogen-activated protein kinase-38β and GSK3β inhibitors significantly reduced their mineralization ( P <0.01). Raman spectroscopy identified the inorganic phosphate deposits as hydroxyapatite and showed a significant increase in hydroxyapatite deposition in HAVICs in response to WNT5a and WNT11 ( P <0.05). Similar crystallinity was seen in the deposits found in HAVICs treated with Wnts and in calcified human aortic valves. Conclusions— These findings suggest a potential role for noncanonical Wnt signaling in the pathogenesis of aortic valve calcification.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3