Affiliation:
1. Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.
Abstract
Recent studies suggest that humoral and endothelium-dependent mechanisms may play an important role in the cerebral circulation. Angiotensin may acutely and chronically increase resistance of large cerebral arteries and reduce cerebral microvascular pressure without changing cerebral blood flow. We hypothesize that the brain may sense reductions in microvascular pressure and initiate compensatory neurohumoral responses to raise arterial pressure. Vasopressin appears to play an important role in regulation of production of cerebrospinal fluid and brain fluid volume. Vasopressin also may be protective when intracranial pressure is elevated. Endothelium-dependent mechanisms also may have important influences on tone of cerebral vessels. Synthesis of the endothelium-derived relaxing factor nitric oxide, or a nitric oxide-containing compound, appears to influence both basal tone and responses of large cerebral arteries to acetylcholine in vivo. Large cerebral arteries dilate in response to increased blood flow in vivo, and this response may be mediated in part by release of a humoral factor by endothelium. Endothelium-dependent responses of cerebral arterioles to receptor- and nonreceptor-mediated agonists are impaired during chronic hypertension. The mechanism of impairment of endothelium-dependent responses of cerebral arterioles appears to involve production of an endothelium-derived contracting factor.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献