Mechanism of Ca++ antagonist-induced vasodilation. Intracellular actions.

Author:

Saida K,van Breemen C

Abstract

We studied the effects of Ca++ antagonists on intact and skinned muscles of rabbit mesenteric artery. Intact muscle contractions were inhibited by 10(-6) M diltiazem, whereas greater levels were required to abolish contractions in skinned muscle fibers. In contrast, nisoldipine had no effect on skinned muscle contractions, although it inhibited, almost completely, the contraction of intact muscle at concentrations below 10(-6) M. In the presence of EGTA, norepinephrine-induced contractions result from a release of Ca++ from an intracellular store. Diltiazem inhibited these contractions at concentrations between 10(-6) and 10(-4) M. Higher doses were required in studies with skinned muscle preparations. Unlike diltiazem, nisoldipine only partially inhibited the Ca++-free norepinephrine-induced contractions in the range of 10(-7) to 10(-5) M. From these results, we assumed that at low concentrations (below 10(-6) M), diltiazem induced relaxation by blocking Ca++ influx, whereas at relatively high concentrations (above 10(-6) M), an inhibition of Ca++ release from an intracellular store also occurred. A similar conclusion was reached regarding the mechanism whereby nisoldipine inhibits force developments.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference15 articles.

1. Interaction of the antihypertensive drug felodipine with calmodulin

2. Cauvin C Saida K van Breemen C (in press) Effects of Ca antagonists on Ca fluxes in resistance vessels. J Cardiovasc Pharmacol

3. Calcium release from the sarcoplasmic reticulum

4. Specific Pharmacology of Calcium in Myocardium, Cardiac Pacemakers, and Vascular Smooth Muscle

5. The inhibition by flunarizine of the norepinephrine-evoked contraction and calcium influx in rat aorta and mesenteric arteries;Godfraind T;J Pharmacol Exp Ther,1981

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3