Inhibition of aldosterone biosynthesis by atriopeptins in rat adrenal cells.

Author:

Campbell W B,Currie M G,Needleman P

Abstract

The effect of synthetic atriopeptins on basal and stimulated aldosterone secretion was determined in isolated adrenal glomerulosa cells of the rat. Neither atriopeptin I (1-21) or III (1-24, i.e., the Phe-Arg-Tyr carboxy-terminal extension of atriopeptin I) altered basal aldosterone release. However, if the cells were prepared from adrenals of sodium-depleted rats, the basal aldosterone release was increased by 9-fold, compared with cells from normal rats. This elevated release was inhibited by 32% by atriopeptin I and atriopeptin III. Atriopeptin III was more potent than atriopeptin I. Angiotensin II and adrenocorticotropin stimulated the release of aldosterone in a concentration-related manner. Both atriopeptin I and atriopeptin III inhibited the stimulation by the peptides. Atriopeptin I inhibited angiotensin II- and adrenocorticotropin-induced aldosterone production by 50% at concentrations of 12 and 11 nM, respectively, and 0.5 and 0.2 nM, respectively, for atriopeptin III. Potassium-stimulated aldosterone production was also inhibited by atriopeptin I and atriopeptin III with 50% inhibition at concentrations of 10 and 0.4 nM, respectively. Shorter peptides (1-20, 1-19, and 3-19) were equipotent to atriopeptin I (1-21) as inhibitors of angiotensin II-induced steroidogenesis. To determine the site at which atriopeptins inhibit aldosterone synthesis, we used cyanoketone to inhibit 3 beta-hydroxy-dehydrogenase and dissociate the early and late pathways. Angiotensin II (2 nM) increased the synthesis of pregnenolone (early pathway), as well as the conversion of [3H]corticosterone to [3H]aldosterone (late pathway). Atriopeptin III inhibited basal pregnenolone synthesis by 36% and completely blocked angiotensin II-stimulated synthesis. The peptide similarly inhibited the late pathway.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3