Swelling-Activated Chloride Current Is Persistently Activated in Ventricular Myocytes From Dogs With Tachycardia-Induced Congestive Heart Failure

Author:

Clemo Henry F.1,Stambler Bruce S.1,Baumgarten Clive M.1

Affiliation:

1. From the Departments of Internal Medicine (H.F.C.) and Physiology (H.F.C., C.M.B.), Medical College of Virginia, Virginia Commonwealth University, Richmond, Va, and Division of Cardiology (B.S.S.), Case Western Reserve University, and University Hospitals of Cleveland, Cleveland, Ohio.

Abstract

Abstract —The hypothesis that cellular hypertrophy in congestive heart failure (CHF) modulates mechanosensitive (ie, swelling- or stretch-activated) anion channels was tested. Digital video microscopy and amphotericin-perforated-patch voltage clamp were used to measure cell volume and ion currents in ventricular myocytes isolated from normal dogs and dogs with rapid ventricular pacing-induced CHF. In normal myocytes, osmotic swelling in 0.9T to 0.6T solution (T, relative osmolarity; isosmotic solution, 296 mOsmol/L) was required to elicit I Cl,swell , an outwardly rectifying swelling-activated Cl current that reversed near –33 mV and was inhibited by 1 mmol/L 9-anthracene carboxylic acid (9AC), an anion channel blocker. Block of I Cl,swell by 9AC simultaneously increased the volume of normal cells in hyposmotic solutions by up to 7%, but 9AC had no effect on volume in isosmotic or hyperosmotic solutions. In contrast, I Cl,swell was persistently activated under isosmotic conditions in CHF myocytes, and 9AC increased cell volume by 9%. Osmotic shrinkage in 1.1T to 1.5T solution inhibited both I Cl,swell and 9AC-induced cell swelling in CHF cells, whereas osmotic swelling only slightly increased I Cl,swell . The current density for fully activated 9AC-sensitive I Cl,swell was 40% greater in CHF than normal myocytes. In both groups, 9AC-sensitive current and 9AC-induced cell swelling were proportional with changes in osmolarity and 9AC concentration, and the effects of 9AC on current and volume were blocked by replacing bath Cl with methanesulfonate. CHF thus altered the set point and magnitude of I Cl,swell and resulted in its persistent activation. We previously observed analogous regulation of mechanosensitive cation channels in the same CHF model. Mechanosensitive anion and cation channels may contribute to the electrophysiological and contractile derangements in CHF and may be novel targets for therapy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3