Altered signal transduction in vascular smooth muscle cells of spontaneously hypertensive rats.

Author:

Bendhack L M1,Sharma R V1,Bhalla R C1

Affiliation:

1. Department of Anatomy, University of Iowa College of Medicine, Iowa City 52242.

Abstract

The hypothesis that signal transduction mediated by platelet-derived growth factor (PDGF) and angiotensin II (Ang II) is altered in vascular smooth muscle (VSM) cells from the spontaneously hypertensive rat (SHR) was tested by measuring changes in the cytosolic free calcium concentration ([Ca2+]i). [Ca2+]i was measured in cultured aortic smooth muscle cells from SHRs and Wistar-Kyoto (WKY) normotensive rats using fura-2 as a calcium indicator and a microscopic digital image analysis system. Activation of cells with Ang II resulted in a prompt though transient rise in [Ca2+]i; the maximum increase was observed after 10-30-second intervals. On the other hand, activation of cells with PDGF BB produced an increase in [Ca2+]i with a 40-60-second lag period; the maximum increase was observed 2-4 minutes after the addition of PDGF. PDGF-stimulated increases in [Ca2+]i were markedly inhibited by the addition of the calcium channel antagonist verapamil (100 microM) as well as by removal of calcium from the extracellular bathing medium. However, Ang II-stimulated [Ca2+]i was not significantly affected by the addition of verapamil or by removal of extracellular calcium. These results would indicate that PDGF-mediated increases in [Ca2+]i in VSM cells are predominantly via Ca2+ influx, whereas Ang II-mediated increases are due to calcium release from intracellular pools. Basal and PDGF- and Ang II-stimulated increases in [Ca2+]i were significantly greater (p less than 0.05) in SHR VSM cells compared with WKY cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3