Molecular Mechanism of the Inhibitory Effect of Aldosterone on Endothelial NO Synthase Activity

Author:

Nagata Daisuke1,Takahashi Masao1,Sawai Kuniko1,Tagami Tetsuya1,Usui Takeshi1,Shimatsu Akira1,Hirata Yasunobu1,Naruse Mitsuhide1

Affiliation:

1. From the Division of Endocrinology (D.N., K.S., T.T., T.U., A.S., M.N.), National Hospital Organization Kyoto Medical Center, Research Institute, Kyoto, Japan; Department of Internal Medicine (M.T., Y.H.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan.

Abstract

Although the proinflammatory and profibrotic actions of aldosterone (Aldo) on the vasculature have been reported, the effects and molecular mechanisms of Aldo on endothelial function are yet to be determined. We investigated how Aldo regulates endothelial NO synthase (eNOS) function in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated for 16 hours with Aldo 10 −7 mol/L. The concentration of reactive oxygen species was estimated by measuring 2′,7′-dichlorodihydrofluorescein diacetate chemiluminescence. Signal transduction was estimated by Western immunoblots. Real-time RT-PCR was performed to measure expression of transcripts of endogenous GTP cyclohydrolase-1 and components of reduced nicotinamide-adenine dinucleotide phosphate oxidase. To eliminate the possible effect of the glucocorticoid receptor (GR) and to emphasize the role of mineralocorticoid receptor, we used GR small interfering RNA and knocked down GR expression in several experiments. NO output was estimated by intracellular cGMP concentration. Reactive oxygen species production increased significantly in Aldo-treated HUVECs but was abolished by pretreatment with eplerenone. Transcripts of p47 phox were increased by Aldo treatment. Vascular endothelial growth factor–induced eNOS Ser 1177 but not Akt Ser 473 phosphorylation levels were reduced significantly by pretreatment with Aldo. Pretreatment with either eplerenone or okadaic acid restored phosphorylation levels of eNOS Ser 1177 in Aldo-treated cells, suggesting that protein phosphatase 2A was upregulated by Aldo via mineralocorticoid receptor. The decrease in NO output caused by Aldo pretreatment was reversed significantly by 5,6,7,8-tetrahydrobiopterin, GTP cyclohydrolase-1 overexpression, or p47 phox knockdown. These results suggest that Aldo inhibits eNOS function through bimodal mechanisms of 5,6,7,8-tetrahydrobiopterin deficiency and protein phosphatase 2A activation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3