Involvement of Aldosterone and Mineralocorticoid Receptors in Rat Mesangial Cell Proliferation and Deformability

Author:

Nishiyama Akira1,Yao Li1,Fan Yuyan1,Kyaw Moe1,Kataoka Noriyuki1,Hashimoto Ken1,Nagai Yukiko1,Nakamura Emi1,Yoshizumi Masanori1,Shokoji Takatomi1,Kimura Shoji1,Kiyomoto Hideyasu1,Tsujioka Katsuhiko1,Kohno Masakazu1,Tamaki Toshiaki1,Kajiya Fumihiko1,Abe Youichi1

Affiliation:

1. From the Department of Pharmacology (A.N., L.Y., Y.F., T.S., S.K., Y.A.), Research Equipment Center (Y.N.), and Second Department of Internal Medicine (H.K., M. Kohno), Kagawa Medical University, Japan; Department of Pharmacology (M. Kyaw, M.Y., T.T.), The University of Tokushima School of Medicine, Japan; Departments of Medical Engineering (N.K., F.K.) and Physiology (K.H., E.N., K.T.), Kawasaki Medical School, Kurashiki, Japan; and Department of Cardiovascular Physiology and Medical Engineering (F...

Abstract

We demonstrated recently that chronic administration of aldosterone to rats induces glomerular mesangial injury and activates mitogen-activated protein kinases including extracellular signal-regulated kinases 1/2 (ERK1/2). We also observed that the aldosterone-induced mesangial injury and ERK1/2 activation were prevented by treatment with a selective mineralocorticoid receptor (MR) antagonist, eplerenone, suggesting that the glomerular mesangium is a potential target for injuries induced by aldosterone via activation of MR. In the present study, we investigated whether MR is expressed in cultured rat mesangial cells (RMCs) and involved in aldosterone-induced RMC injury. MR expression and localization were evaluated by Western blotting analysis and fluorolabeling methods. Cell proliferation and micromechanical properties were determined by [ 3 H]-thymidine uptake measurements and a nanoindentation technique using an atomic force microscope cantilever, respectively. ERK1/2 activity was measured by Western blotting analysis with an anti-phospho–ERK1/2 antibody. Protein expression and immunostaining revealed that MR was abundant in the cytoplasm of RMCs. Aldosterone (1 to 100 nmol/L) dose-dependently activated ERK1/2 in RMCs with a peak at 10 minutes. Pretreatment with eplerenone (10 μmol/L) significantly attenuated aldosterone-induced ERK1/2 phosphorylation. Aldosterone (100 nmol/L) treatment for 30 hours increased [ 3 H]-thymidine incorporation and decreased the elastic modulus, indicating cellular proliferative and deforming effects of aldosterone, respectively. These aldosterone-induced changes in cellular characteristics were prevented by pretreatment with eplerenone or an ERK (MEK) inhibitor, PD988059 (100 μmol/L). The results indicate that aldosterone directly induces RMC proliferation and deformability through MR and ERK1/2 activation, which may contribute to the pathogenesis of glomerular mesangial injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3