Overexpression of Angiotensin-Converting Enzyme 2 in the Rostral Ventrolateral Medulla Causes Long-Term Decrease in Blood Pressure in the Spontaneously Hypertensive Rats

Author:

Yamazato Masanobu1,Yamazato Yoriko1,Sun Chengwen1,Diez-Freire Carlos1,Raizada Mohan K.1

Affiliation:

1. From the Department of Physiology and Function Genomics, College of Medicine and McKnight Brain Institute, University of Florida, Gainesville.

Abstract

The rostral ventrolateral medulla (RVLM) is a relay point that provides supraspinal excitatory input to sympathetic preganglionic neurons in the regulation of blood pressure. The importance of the RVLM is further highlighted by observations that an increase of RVLM sensitivity to angiotensin II and enhanced sympathetic activity are associated with hypertension. Angiotensin-converting enzyme 2 (ACE2) has been shown to be central in maintaining the balance between vasoconstrictor activity of angiotensin II with vasoprotective action of angiotensin-(1-7) in the peripheral system. However, its role in central control of blood pressure in the RVLM is yet to be investigated. Thus, our objective in this study was to compare ACE2 expression in the RVLM of Wistar–Kyoto rats and spontaneously hypertensive rats and to determine whether RVLM ACE2 is involved in blood pressure control. ACE2 immunoreactivity was diffusely distributed in many cardiovascular regulatory neurons, including the RVLM. Western blot analysis revealed a 40% decrease in ACE2 in the RVLM of spontaneously hypertensive rat compared with Wistar–Kyoto rats. Lentiviral-mediated overexpression of ACE2 (lenti-ACE2) was used to determine whether a decrease in ACE2 in the RVLM is associated with hypertensive state. Bilateral injection of lenti-ACE2 resulted in a long-term expression of transgenic ACE2. This was associated with a decrease in mean arterial pressure exclusively in the spontaneously hypertensive rat (141±4 mm Hg in lenti-GFP versus 124±5 mm Hg in lenti-ACE2) and heart rate (304±7 bpm in lenti-GFP versus 285±5 bpm in lenti-ACE2). These observations demonstrate that overexpression of ACE2 overcomes its intrinsic decrease in the RVLM and decreases high blood pressure in the spontaneously hypertensive rat.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3