Global cerebral ischemia and intracellular pH during hyperglycemia and hypoglycemia in cats.

Author:

Chopp M1,Welch K M1,Tidwell C D1,Helpern J A1

Affiliation:

1. Department of Neurology, Henry Ford Hospital, Detroit, MI 48202.

Abstract

In 27 cats treated to vary arterial serum glucose concentrations, we measured cerebral high-energy phosphate metabolite concentration and intracellular pH using in vivo phosphorus-31 nuclear magnetic resonance spectroscopy during transient global cerebral ischemia and reperfusion. Hypoglycemia was induced with 4 units/kg i.v. insulin in six cats before ischemia; hyperglycemia was induced with 1.5 g/kg i.v. glucose in six cats before and in six cats during ischemia. Nine untreated cats subjected to ischemia without manipulation of blood glucose concentration served as controls. During ischemia, intracellular pH fell to similar levels in the control and both hyperglycemic groups. During reperfusion, the hyperglycemic before ischemia group initially exhibited a severe further decline in intracellular pH (p less than 0.003); this further decline was not observed in the control or the hyperglycemic during ischemia groups. Intracellular acidosis was attenuated both during ischemia and early after reperfusion in the hypoglycemic before ischemia group. In all groups, cerebral high-energy phosphate metabolite concentrations were depleted during ischemia and then recovered to the same degree during reperfusion. Our data suggest that brain glucose stores before ischemia determine the severity and time course of intracellular acidosis during ischemia and reperfusion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early Glycemic State and Outcomes of Neonates With Hypoxic-Ischemic Encephalopathy;Pediatrics;2023-09-01

2. pH and proton-sensitive receptors in brain ischemia;Journal of Cerebral Blood Flow & Metabolism;2022-03-18

3. Precision Cardiac Arrest Resuscitation Based on Etiology;Critical Care Clinics;2020-10

4. Central Nervous System Physiology;Pharmacology and Physiology for Anesthesia;2019

5. Neuroprotectants in the Era of Reperfusion Therapy;Journal of Stroke;2018-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3