Experimental brain infarcts in cats. I. Pathophysiological observations.

Author:

Hossmann K A,Schuier F J

Abstract

In 48 cases the left middle cerebral artery was occluded under light barbiturate anaesthesia using a transorbital approach. The animals were kept alive for 1, 2, and 4 hours after vascular occlusion. Regional cerebral blood flow was measured by the intracardiac microsphere injection technique before ischemia, 15 min after the onset of ischemia, and at the end of experiments. The density of regional ischemia was correlated with EEG changes and with the electrolyte, water and metabolite content of the same tissue samples in which blood flow was assessed. In the territory of the occluded middle cerebral artery, cortical blood flow decreased from 41.4 +/- 3.8 to 21.3 +/- 4.0 ml/100 g/min (means +/- SE), the actual flow rate depending on the individual efficacy of collateral blood supply. At flow rates below 10--15 ml/100 g/min, ischemia involved more than 50% of the middle cerebral artery territory, water and electrolyte homeostasis was severely disturbed and ischemic brain edema developed. Adenosine triphosphate decreased to about 60% of the control value at flow rates below 40 ml/100 g/min, but it remained at this level down to flow rates as low as 5 ml/100 g/min. EEG intensity -- but not EEG frequency -- decreased in parallel with blood flow, indicating that with increasing density of ischemia an increasing portion of the excitable neuropil was inhibited. The development of ischemic brain edema determined the further progression of ischemia. When blood flow decreased below the threshold for water and ion disturbance, ischemia was progressive (critical ischemia), but an amelioration of flow occurred in animals in which flow remained above this level (non-critical ischemia). In the contralateral hemisphere the EEG, blood flow, water and electrolyte content did not change significantly during the initial few hours of ischemia. Diaschisis, in consequence, was not a prominent feature during the early phase of infarct development.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3