Kcnj11 Ablation Is Associated With Increased Nitro-Oxidative Stress During Ischemia-Reperfusion Injury

Author:

Zhang Bo1,Novitskaya Tatiana1,Wheeler Debra G.1,Xu Zhaobin1,Chepurko Elena1,Huttinger Ryan1,He Heng1,Varadharaj Saradhadevi1,Zweier Jay L.1,Song Yanna1,Xu Meng1,Harrell Frank E.1,Su Yan Ru1,Absi Tarek1,Kohr Mark J.1,Ziolo Mark T.1,Roden Dan M.1,Shaffer Christian M.1,Galindo Cristi L.1,Wells Quinn S.1,Gumina Richard J.1

Affiliation:

1. From the Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute (B.Z., D.G.W., Z.X., R.H., H.H., S.V., J.L.Z.), Department of Physiology and Cell Biology (B.Z., J.L.Z., M.J.K., M.T.Z.), The Ohio State University, Columbus; Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, China (B.Z.); Department of Biostatistics (Y.S., M.X., F.E.H.), Division of Clinical Pharmacology, Department of Medicine...

Abstract

Background— Despite increased secondary cardiovascular events in patients with ischemic cardiomyopathy (ICM), the expression of innate cardiac protective molecules in the hearts of patients with ICM is incompletely characterized. Therefore, we used a nonbiased RNAseq approach to determine whether differences in cardiac protective molecules occur with ICM. Methods and Results— RNAseq analysis of human control and ICM left ventricular samples demonstrated a significant decrease in KCNJ11 expression with ICM. KCNJ11 encodes the Kir6.2 subunit of the cardioprotective K ATP channel. Using wild-type mice and kcnj11 -deficient ( kcnj11 -null) mice, we examined the effect of kcnj11 expression on cardiac function during ischemia-reperfusion injury. Reactive oxygen species generation increased in kcnj11 -null hearts above that found in wild-type mice hearts after ischemia-reperfusion injury. Continuous left ventricular pressure measurement during ischemia and reperfusion demonstrated a more compromised diastolic function in kcnj11 -null compared with wild-type mice during reperfusion. Analysis of key calcium-regulating proteins revealed significant differences in kcnj11 -null mice. Despite impaired relaxation, kcnj11 -null hearts increased phospholamban Ser16 phosphorylation, a modification that results in the dissociation of phospholamban from sarcoendoplasmic reticulum Ca 2+ , thereby increasing sarcoendoplasmic reticulum Ca 2+ –mediated calcium reuptake. However, kcnj11 -null mice also had increased 3-nitrotyrosine modification of the sarcoendoplasmic reticulum Ca 2+ -ATPase, a modification that irreversibly impairs sarcoendoplasmic reticulum Ca 2+ function, thereby contributing to diastolic dysfunction. Conclusions— KCNJ11 expression is decreased in human ICM. Lack of kcnj11 expression increases peroxynitrite-mediated modification of the key calcium-handling protein sarcoendoplasmic reticulum Ca 2+ -ATPase after myocardial ischemia-reperfusion injury, contributing to impaired diastolic function. These data suggest a mechanism for ischemia-induced diastolic dysfunction in patients with ICM.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3