Activation of Histone Deacetylase-6 Induces Contractile Dysfunction Through Derailment of α-Tubulin Proteostasis in Experimental and Human Atrial Fibrillation

Author:

Zhang Deli1,Wu Chia-Tung1,Qi XiaoYan1,Meijering Roelien A.M.1,Hoogstra-Berends Femke1,Tadevosyan Artavazd1,Cubukcuoglu Deniz Gunseli1,Durdu Serkan1,Akar Ahmet Ruchan1,Sibon Ody C.M.1,Nattel Stanley1,Henning Robert H.1,Brundel Bianca J.J.M.1

Affiliation:

1. From the Departments of Clinical Pharmacology (D.Z., R.A.M.M., F.H.-B., R.H.H., B.J.J.M.B.) and Cell Biology (O.C.M.S.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Research Center and Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, QB, Canada (C.T.W., X.Y.Q., A.T., S.N.); Chang-Gung Memorial Hospital and Chang-Gung University, Taoyuan, Taiwan, Republic of China (C.T.W.); Nyken BV, Groningen, The Netherlands (F.-H.B...

Abstract

Background— Atrial fibrillation (AF) is characterized by structural remodeling, contractile dysfunction, and AF progression. Histone deacetylases (HDACs) influence acetylation of both histones and cytosolic proteins, thereby mediating epigenetic regulation and influencing cell proteostasis. Because the exact function of HDACs in AF is unknown, we investigated their role in experimental and clinical AF models. Methods and Results— Tachypacing of HL-1 atrial cardiomyocytes and Drosophila pupae hearts significantly impaired contractile function (amplitude of Ca 2+ transients and heart wall contractions). This dysfunction was prevented by inhibition of HDAC6 (tubacin) and sirtuins (nicotinamide). Tachypacing induced specific activation of HDAC6, resulting in α-tubulin deacetylation, depolymerization, and degradation by calpain. Tachypacing-induced contractile dysfunction was completely rescued by dominant-negative HDAC6 mutants with loss of deacetylase activity in the second catalytic domain, which bears α-tubulin deacetylase activity. Furthermore, in vivo treatment with the HDAC6 inhibitor tubastatin A protected atrial tachypaced dogs from electric remodeling (action potential duration shortening, L-type Ca 2+ current reduction, AF promotion) and cellular Ca 2+ -handling/contractile dysfunction (loss of Ca 2+ transient amplitude, sarcomere contractility). Finally, atrial tissue from patients with AF also showed a significant increase in HDAC6 activity and reduction in the expression of both acetylated and total α-tubulin. Conclusions— AF induces remodeling and loss of contractile function, at least in part through HDAC6 activation and subsequent derailment of α-tubulin proteostasis and disruption of the cardiomyocyte microtubule structure. In vivo inhibition of HDAC6 protects against AF-related atrial remodeling, disclosing the potential of HDAC6 as a therapeutic target in clinical AF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3