Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Cytoskeleton-Associated Protein 4 as a New Modulator of Fibroblasts Activation

Author:

Gladka Monika M.1,Molenaar Bas1,de Ruiter Hesther1,van der Elst Stefan1,Tsui Hoyee1,Versteeg Danielle12,Lacraz Grègory P.A.1,Huibers Manon M.H.3,van Oudenaarden Alexander,van Rooij Eva12

Affiliation:

1. Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (M.M.G., B.M., H.d.R., S.v.d.E., H.T., D.V., G.P.A.L., A.v.O., E v.R.)

2. Department of Cardiology (D.V., E.v.R.)

3. Department of Pathology (M.M.H.), University Medical Centre, Utrecht, The Netherlands.

Abstract

Background: Genome-wide transcriptome analysis has greatly advanced our understanding of the regulatory networks underlying basic cardiac biology and mechanisms driving disease. However, so far, the resolution of studying gene expression patterns in the adult heart has been limited to the level of extracts from whole tissues. The use of tissue homogenates inherently causes the loss of any information on cellular origin or cell type-specific changes in gene expression. Recent developments in RNA amplification strategies provide a unique opportunity to use small amounts of input RNA for genome-wide sequencing of single cells. Methods: Here, we present a method to obtain high-quality RNA from digested cardiac tissue from adult mice for automated single-cell sequencing of both the healthy and diseased heart. Results: After optimization, we were able to perform single-cell sequencing on adult cardiac tissue under both homeostatic conditions and after ischemic injury. Clustering analysis based on differential gene expression unveiled known and novel markers of all main cardiac cell types. Based on differential gene expression, we could identify multiple subpopulations within a certain cell type. Furthermore, applying single-cell sequencing on both the healthy and injured heart indicated the presence of disease-specific cell subpopulations. As such, we identified cytoskeleton-associated protein 4 as a novel marker for activated fibroblasts that positively correlates with known myofibroblast markers in both mouse and human cardiac tissue. Cytoskeleton-associated protein 4 inhibition in activated fibroblasts treated with transforming growth factor β triggered a greater increase in the expression of genes related to activated fibroblasts compared with control, suggesting a role of cytoskeleton-associated protein 4 in modulating fibroblast activation in the injured heart. Conclusions: Single-cell sequencing on both the healthy and diseased adult heart allows us to study transcriptomic differences between cardiac cells, as well as cell type-specific changes in gene expression during cardiac disease. This new approach provides a wealth of novel insights into molecular changes that underlie the cellular processes relevant for cardiac biology and pathophysiology. Applying this technology could lead to the discovery of new therapeutic targets relevant for heart disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 221 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3