Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment

Author:

Ortega-Gomez Almudena1,Salvermoser Melanie1,Rossaint Jan1,Pick Robert1,Brauner Janine1,Lemnitzer Patricia1,Tilgner Jessica1,de Jong Renske J.1,Megens Remco T. A.1,Jamasbi Janina1,Döring Yvonne1,Pham Christine T.1,Scheiermann Christoph1,Siess Wolfgang1,Drechsler Maik1,Weber Christian1,Grommes Jochen1,Zarbock Alexander1,Walzog Barbara1,Soehnlein Oliver1

Affiliation:

1. From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine,...

Abstract

Background: Therapeutic targeting of arterial leukocyte recruitment in the context of atherosclerosis has been disappointing in clinical studies. Reasons for such failures include the lack of knowledge of arterial-specific recruitment patterns. Here we establish the importance of the cathepsin G (CatG) in the context of arterial myeloid cell recruitment. Methods: Intravital microscopy of the carotid artery, the jugular vein, and cremasteric arterioles and venules in Apoe –/– and CatG-deficient mice ( Apoe –/– Ctsg –/– ) was used to study site-specific myeloid cell behavior after high-fat diet feeding or tumor necrosis factor stimulation. Atherosclerosis development was assessed in aortic root sections after 4 weeks of high-fat diet, whereas lung inflammation was assessed after inhalation of lipopolysaccharide. Endothelial deposition of CatG and CCL5 was quantified in whole-mount preparations using 2-photon and confocal microscopy. Results: Our observations elucidated a crucial role for CatG during arterial leukocyte adhesion, an effect not found during venular adhesion. Consequently, CatG deficiency attenuates atherosclerosis but not acute lung inflammation. Mechanistically, CatG is immobilized on arterial endothelium where it activates leukocytes to firmly adhere engaging integrin clustering, a process of crucial importance to achieve effective adherence under high-shear flow. Therapeutic neutralization of CatG specifically abrogated arterial leukocyte adhesion without affecting myeloid cell adhesion in the microcirculation. Repetitive application of CatG-neutralizing antibodies permitted inhibition of atherogenesis in mice. Conclusions: Taken together, these findings present evidence of an arterial-specific recruitment pattern centered on CatG-instructed adhesion strengthening. The inhibition of this process could provide a novel strategy for treatment of arterial inflammation with limited side effects.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3