Increased Pericyte Coverage Mediated by Endothelial-Derived Fibroblast Growth Factor-2 and Interleukin-6 Is a Source of Smooth Muscle–Like Cells in Pulmonary Hypertension

Author:

Ricard Nicolas1,Tu Ly1,Le Hiress Morane1,Huertas Alice1,Phan Carole1,Thuillet Raphaël1,Sattler Caroline1,Fadel Elie1,Seferian Andrei1,Montani David1,Dorfmüller Peter1,Humbert Marc1,Guignabert Christophe1

Affiliation:

1. From the National Institute of Health and Medical Research, Unit 999, LabEx Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (N.R., L.T., M.L.H., A.H., C.P., R.T., C.S., E.F., A.S., D.M., P.D., M.H., C.G.); University Paris-Sud, School of Medicine, Kremlin-Bicêtre, France (N.R., L.T., M.L.H., A.H., C.P., R.T., C.S., E.F., A.S., D.M., P.D., M.H., C.G.); and Public Hospitals of Paris, Pneumology Service,...

Abstract

Background— Pericytes and their crosstalk with endothelial cells are critical for the development of a functional microvasculature and vascular remodeling. It is also known that pulmonary endothelial dysfunction is intertwined with the initiation and progression of pulmonary arterial hypertension (PAH). We hypothesized that pulmonary endothelial dysfunction, characterized by abnormal fibroblast growth factor-2 and interleukin-6 signaling, leads to abnormal microvascular pericyte coverage causing pulmonary arterial medial thickening. Methods and Results— In human lung tissues, numbers of pericytes are substantially increased (up to 2-fold) in distal PAH pulmonary arteries compared with controls. Interestingly, human pulmonary pericytes exhibit, in vitro, an accentuated proliferative and migratory response to conditioned media from human idiopathic PAH endothelial cells compared with conditioned media from control cells. Importantly, by using an anti–fibroblast growth factor-2 neutralizing antibody, we attenuated these proliferative and migratory responses, whereas by using an anti–interleukin-6 neutralizing antibody, we decreased the migratory response without affecting the proliferative response. Furthermore, in our murine retinal angiogenesis model, both fibroblast growth factor-2 and interleukin-6 administration increased pericyte coverage. Finally, using idiopathic PAH human and NG2DsRedBAC mouse lung tissues, we demonstrated that this increased pericyte coverage contributes to pulmonary vascular remodeling as a source of smooth muscle–like cells. Furthermore, we found that transforming growth factor-β, in contrast to fibroblast growth factor-2 and interleukin-6, promotes human pulmonary pericyte differentiation into contractile smooth muscle–like cells. Conclusions— To the best of our knowledge, this is the first report of excessive pericyte coverage in distal pulmonary arteries in human PAH. We also show that this phenomenon is directly linked with pulmonary endothelial dysfunction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 174 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3