Genome-Wide Analysis of Left Ventricular Image-Derived Phenotypes Identifies Fourteen Loci Associated With Cardiac Morphogenesis and Heart Failure Development

Author:

Aung Nay123,Vargas Jose D.4,Yang Chaojie5,Cabrera Claudia P.6,Warren Helen R.12,Fung Kenneth123,Tzanis Evan6,Barnes Michael R.6,Rotter Jerome I.7,Taylor Kent D.7,Manichaikul Ani W.5,Lima Joao A.C.8,Bluemke David A.9,Piechnik Stefan K.10,Neubauer Stefan10,Munroe Patricia B.12,Petersen Steffen E.123

Affiliation:

1. William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (N.A., H.R.W., K.F., P.B.M., S.E.P.), Queen Mary University of London, United Kingdom.

2. National Institute for Health Research, Barts Cardiovascular Biomedical Research Centre (N.A., H.R.W., K.F., P.B.M., S.E.P.), Queen Mary University of London, United Kingdom.

3. Barts Heart Centre, St Bartholomew’s Hospital, Barts Health National Health Service Trust, West Smithfield, London, United Kingdom (N.A., K.F., S.E.P.).

4. Medstar Heart and Vascular Institute, Medstar Georgetown University Hospital, Washington, DC (J.D.V.).

5. Center for Public Health Genomics, University of Virginia, Charlottesville (C.Y., A.W.M.).

6. Centre for Translational Bioinformatics (C.P.C., E.T., M.R.B.), Queen Mary University of London, United Kingdom.

7. The Institute for Translational Genomics and Population Sciences, Division of Genomics Outcomes, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Medical Center, Torrance, CA (J.I.R., K.D.T.).

8. Division of Cardiology, Johns Hopkins University, Baltimore, MD (J.AC.L.).

9. Department of Radiology, University of Wisconsin, Madison (D.A.B.).

10. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.K.P., S.N.)

Abstract

Background: The genetic basis of left ventricular (LV) image-derived phenotypes, which play a vital role in the diagnosis, management, and risk stratification of cardiovascular diseases, is unclear at present. Methods: The LV parameters were measured from the cardiovascular magnetic resonance studies of the UK Biobank. Genotyping was done using Affymetrix arrays, augmented by imputation. We performed genome-wide association studies of 6 LV traits—LV end-diastolic volume, LV end-systolic volume, LV stroke volume, LV ejection fraction, LV mass, and LV mass to end-diastolic volume ratio. The replication analysis was performed in the MESA study (Multi-Ethnic Study of Atherosclerosis). We identified the candidate genes at genome-wide significant loci based on the evidence from extensive bioinformatic analyses. Polygenic risk scores were constructed from the summary statistics of LV genome-wide association studies to predict the heart failure events. Results: The study comprised 16 923 European UK Biobank participants (mean age 62.5 years; 45.8% men) without prevalent myocardial infarction or heart failure. We discovered 14 genome-wide significant loci (3 loci each for LV end-diastolic volume, LV end-systolic volume, and LV mass to end-diastolic volume ratio; 4 loci for LV ejection fraction, and 1 locus for LV mass) at a stringent P <1×10 −8 . Three loci were replicated at Bonferroni significance and 7 loci at nominal significance ( P <0.05 with concordant direction of effect) in the MESA study (n=4383). Follow-up bioinformatic analyses identified 28 candidate genes that were enriched in the cardiac developmental pathways and regulation of the LV contractile mechanism. Eight genes ( TTN, BAG3, GRK5, HSPB7, MTSS1, ALPK3, NMB , and MMP11 ) supported by at least 2 independent lines of in silico evidence were implicated in the cardiac morphogenesis and heart failure development. The polygenic risk scores of LV phenotypes were predictive of heart failure in a holdout UK Biobank sample of 3106 cases and 224 134 controls (odds ratio 1.41, 95% CI 1.26 – 1.58, for the top quintile versus the bottom quintile of the LV end-systolic volume risk score). Conclusions: We report 14 genetic loci and indicate several candidate genes that not only enhance our understanding of the genetic architecture of prognostically important LV phenotypes but also shed light on potential novel therapeutic targets for LV remodeling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3