The Role of Nonglycolytic Glucose Metabolism in Myocardial Recovery Upon Mechanical Unloading and Circulatory Support in Chronic Heart Failure

Author:

Badolia Rachit12,Ramadurai Dinesh K.A.1,Abel E. Dale3,Ferrin Peter1,Taleb Iosif12,Shankar Thirupura S.1,Krokidi Aspasia Thodou1,Navankasattusas Sutip1,McKellar Stephen H.2,Yin Michael2,Kfoury Abdallah G.2,Wever-Pinzon Omar2,Fang James C.2,Selzman Craig H.12,Chaudhuri Dipayan1,Rutter Jared4,Drakos Stavros G.12ORCID

Affiliation:

1. Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.).

2. Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.).

3. Division of Endocrinology, Metabolism and Diabetes and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City (E.D.A.).

4. Department of Biochemistry, University of Utah and Howard Hughes Medical Institute, Salt Lake City (J.R.).

Abstract

Background: Significant improvements in myocardial structure and function have been reported in some patients with advanced heart failure (termed responders [R]) following left ventricular assist device (LVAD)–induced mechanical unloading. This therapeutic strategy may alter myocardial energy metabolism in a manner that reverses the deleterious metabolic adaptations of the failing heart. Specifically, our previous work demonstrated a post-LVAD dissociation of glycolysis and oxidative-phosphorylation characterized by induction of glycolysis without subsequent increase in pyruvate oxidation through the tricarboxylic acid cycle. The underlying mechanisms responsible for this dissociation are not well understood. We hypothesized that the accumulated glycolytic intermediates are channeled into cardioprotective and repair pathways, such as the pentose-phosphate pathway and 1-carbon metabolism, which may mediate myocardial recovery in R. Methods: We prospectively obtained paired left ventricular apical myocardial tissue from nonfailing donor hearts as well as R and nonresponders at LVAD implantation (pre-LVAD) and transplantation (post-LVAD). We conducted protein expression and metabolite profiling and evaluated mitochondrial structure using electron microscopy. Results: Western blot analysis shows significant increase in rate-limiting enzymes of pentose-phosphate pathway and 1-carbon metabolism in post-LVAD R (post-R) as compared with post-LVAD nonresponders (post-NR). The metabolite levels of these enzyme substrates, such as sedoheptulose-6-phosphate (pentose phosphate pathway) and serine and glycine (1-carbon metabolism) were also decreased in Post-R. Furthermore, post-R had significantly higher reduced nicotinamide adenine dinucleotide phosphate levels, reduced reactive oxygen species levels, improved mitochondrial density, and enhanced glycosylation of the extracellular matrix protein, α-dystroglycan, all consistent with enhanced pentose-phosphate pathway and 1-carbon metabolism that correlated with the observed myocardial recovery. Conclusions: The recovering heart appears to direct glycolytic metabolites into pentose-phosphate pathway and 1-carbon metabolism, which could contribute to cardioprotection by generating reduced nicotinamide adenine dinucleotide phosphate to enhance biosynthesis and by reducing oxidative stress. These findings provide further insights into mechanisms responsible for the beneficial effect of glycolysis induction during the recovery of failing human hearts after mechanical unloading.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3