Alternatively Spliced Tissue Factor Promotes Plaque Angiogenesis Through the Activation of Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Signaling

Author:

Giannarelli Chiara1,Alique Matilde1,Rodriguez David T.1,Yang Dong Kwon1,Jeong Dongtak1,Calcagno Claudia1,Hutter Randolph1,Millon Antoine1,Kovacic Jason C.1,Weber Thomas1,Faries Peter L.1,Soff Gerald A.1,Fayad Zahi A.1,Hajjar Roger J.1,Fuster Valentin1,Badimon Juan J.1

Affiliation:

1. From the AtheroThrombosis Research Unit (C.G., M.A., D.T.R., J.J.B.), Cardiovascular Research Institute (C.G., D.K.Y., D.J., J.C.K., T.W., R.J.H., V.F.), Translational and Molecular Imaging Institute (C.C., A.M., Z.A.F.), Department of Radiology (C.C., A.M., Z.A.F.), and Vascular Surgery (P.L.F.), Icahn School of Medicine at Mount Sinai, New York, NY; Memorial Sloan-Kettering, New York, NY (G.A.S.); and CNIC, Madrid, Spain (V.F.).

Abstract

Background— Alternatively spliced tissue factor (asTF) is a novel isoform of full-length tissue factor, which exhibits angiogenic activity. Although asTF has been detected in human plaques, it is unknown whether its expression in atherosclerosis causes increased neovascularization and an advanced plaque phenotype. Methods and Results— Carotid (n=10) and coronary (n=8) specimens from patients with stable or unstable angina were classified as complicated or uncomplicated on the basis of plaque morphology. Analysis of asTF expression and cell type–specific expression revealed a strong expression and colocalization of asTF with macrophages and neovessels within complicated, but not uncomplicated, human plaques. Our results showed that the angiogenic activity of asTF is mediated via hypoxia-inducible factor-1α upregulation through integrins and activation of phosphatidylinositol-3-kinase/Akt and mitogen-activated protein kinase pathways. Hypoxia-inducible factor-1α upregulation by asTF also was associated with increased vascular endothelial growth factor expression in primary human endothelial cells, and vascular endothelial growth factor–Trap significantly reduced the angiogenic effect of asTF in vivo. Furthermore, asTF gene transfer significantly increased neointima formation and neovascularization after carotid wire injury in ApoE −/− mice. Conclusions— The results of this study provide strong evidence that asTF promotes neointima formation and angiogenesis in an experimental model of accelerated atherosclerosis. Here, we demonstrate that the angiogenic effect of asTF is mediated via the activation of the hypoxia-inducible factor-1/vascular endothelial growth factor signaling. This mechanism may be relevant to neovascularization and the progression and associated complications of human atherosclerosis as suggested by the increased expression of asTF in complicated versus uncomplicated human carotid and coronary plaques.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3