Mechanistic Role of I f Revealed by Induction of Ventricular Automaticity by Somatic Gene Transfer of Gating-Engineered Pacemaker (HCN) Channels

Author:

Xue Tian1,Siu Chung-Wah1,Lieu Deborah K.1,Lau Chu-Pak1,Tse Hung-Fat1,Li Ronald A.1

Affiliation:

1. From the Stem Cell Program and Department of Cell Biology and Human Anatomy, University of California, Davis (T.X., C.-W.S., D.K.L., R.A.L.); Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (C.-P.L., H.-F.T., R.A.L.); and Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children of North America, Sacramento, Calif (R.A.L.).

Abstract

Background— Although I f , encoded by the hyperpolarization-activated cyclic-nucleotide-modulated (HCN) channel gene family, is known to be functionally important in pacing, its mechanistic action is largely inferential and indeed somewhat controversial. To dissect in detail the role of I f , we investigated the functional consequences of overexpressing in adult guinea pig left ventricular cardiomyocytes (LVCMs) various HCN1 constructs that have been engineered to exhibit different gating properties. Methods and Results— We created the recombinant adenoviruses Ad-CMV-GFP-IRES (CGI), Ad-CGI-HCN1, Ad-CGI-HCN1-ΔΔΔ, and Ad-CGI-HCN1-Ins, which mediate ectopic expression of GFP alone, WT, EVY235-7ΔΔΔ, and Ins HCN1 channels, respectively; EVY235-7ΔΔΔ and Ins encode channels in which the S3–S4 linkers have been shortened and lengthened to favor and inhibit opening, respectively. Ad-CGI-HCN1, Ad-CGI-HCN1-ΔΔΔ, and Ad-CGI-HCN1-Ins, but not control Ad-CGI, transduction of LVCMs led to robust expression of I f with comparable densities when fully open (≈−22 pA/pF at −140 mV; P >0.05) but distinctive activation profiles (V 1/2 =−70.8±0.6, −60.4±0.7, and −87.7±0.7 mV; P <0.01, respectively). Whereas control (nontransduced or Ad-CGI–transduced) LVCMs were electrically quiescent, automaticity (206±16 bpm) was observed exclusively in 61% of Ad-HCN1-ΔΔΔ–transduced cells that displayed depolarized maximum diastolic potential (−60.6±0.5 versus −70.6±0.6 mV of resting membrane potential of control cells; P <0.01) and gradual phase 4 depolarization (306±32 mV/s) that were typical of genuine nodal cells. Furthermore, spontaneously firing Ad-HCN1-ΔΔΔ–transduced LVCMs responded positively to adrenergic stimulation ( P <0.05) but exhibited neither overdrive excitation nor suppression. In contrast, the remaining 39% of Ad-HCN1-ΔΔΔ–transduced cells exhibited no spontaneous action potentials; however, a single ventricular action potential associated with a depolarized resting membrane potential and a unique, incomplete “phase 4–like” depolarization that did not lead to subsequent firing could be elicited on simulation. Such an intermediate phenotype, similarly observed in 100% of Ad-CGI-HCN– and Ad-CGI-HCN1-Ins–transduced LVCMs, could be readily reversed by ZD7288, hinting at a direct role of I f . Correlation analysis revealed the specific biophysical parameters required for I f to function as an active membrane potential oscillator. Conclusions— Our results not only contribute to a better understanding of cardiac pacing but also may advance current efforts that focus primarily on automaticity induction to the next level by enabling bioengineering of central and peripheral cells that make up the native sinoatrial node.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3