Defective Regulation of Interdomain Interactions Within the Ryanodine Receptor Plays a Key Role in the Pathogenesis of Heart Failure

Author:

Oda Tetsuro1,Yano Masafumi1,Yamamoto Takeshi1,Tokuhisa Takahiro1,Okuda Shinichi1,Doi Masahiro1,Ohkusa Tomoko1,Ikeda Yasuhiro1,Kobayashi Shigeki1,Ikemoto Noriaki1,Matsuzaki Masunori1

Affiliation:

1. From the Department of Medical Bioregulation, Division of Cardiovascular Medicine, Yamaguchi University School of Medicine, Yamaguchi, Japan (T.O., M.Y., T.Y., T.T., S.O., M.D., T.O., Y.I., S.K., M.M.), and Boston Biomedical Research Institute, Watertown, and Department of Neurology, Harvard Medical School, Boston (N.I.), Mass.

Abstract

Background— According to our hypothesis, 2 domains within the ryanodine receptor (RyR) of sarcoplasmic reticulum (SR) (N-terminal [0 to 600] and central [2000 to 2500] domains), where many mutations have been found in patients with polymorphic ventricular tachycardia, interact with each other as a regulatory switch for channel gating. Here, we investigated whether the defective FKBP12.6-mediated stabilization of RyR in heart failure is produced by an abnormal interdomain interaction. Methods and Results— SR vesicles were isolated from dog left ventricular muscles, and then the RyR moiety of the SR was fluorescently labeled with methylcoumarin acetate (MCA) using DPc10, a synthetic peptide corresponding to Gly 2460 -Pro 2495 of RyR (one of the mutable domains in polymorphic ventricular tachycardia), as a site-directing carrier; the carrier was removed from the RyR after MCA labeling. Addition of DPc10 induced an unzipped state of the interacting N-terminal and central domains, as evidenced by an increase in the accessibility of the RyR-bound MCA fluorescence to a large fluorescence quencher. Domain unzipping resulted in Ca 2+ leak through the RyR and facilitated cAMP-dependent hyperphosphorylation of RyR and FKBP12.6 dissociation from RyR. When DPc10 was introduced into the isolated myocytes, the magnitude of intracellular Ca 2+ transient decreased, and its decay time was prolonged. In the SR isolated from pacing-induced dog failing hearts, the domain unzipping has already occurred, together with FKBP12.6 dissociation and Ca 2+ leak. Conclusions— The specific domain interaction within the RyR regulates the channel gating property, and the defectiveness in the mode of the interdomain interaction seems to be the initial critical step of the pathogenesis of heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3